A Low-Rank Solver for the Navier-Stokes Equations with Uncertain Viscosity

被引:10
|
作者
Lee, Kookjin [1 ,2 ]
Elman, Howard C. [1 ,3 ]
Sousedik, Bedrich [4 ]
机构
[1] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[2] Sandia Natl Labs, Extreme Scale Data Sci & Analyt Dept, Livermore, CA 94550 USA
[3] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
[4] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2019年 / 7卷 / 04期
基金
美国国家科学基金会;
关键词
stochastic Galerkin method; Navier-Stokes equations; low-rank approximation; ITERATIVE SOLVERS; POLYNOMIAL CHAOS; DECOMPOSITION; ALGORITHM;
D O I
10.1137/17M1151912
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an iterative low-rank approximation method for the solution of the steady-state stochastic Navier-Stokes equations with uncertain viscosity. The method is based on linearization schemes using Picard and Newton iterations and stochastic finite element discretizations of the linearized problems. For computing the low-rank approximate solution, we adapt the nonlinear iterations to an inexact and low-rank variant, where the solution of the linear system at each nonlinear step is approximated by a quantity of low rank. This is achieved by using a tensor variant of the GMRES method as a solver for the linear systems. We explore the inexact low-rank nonlinear iteration with a set of benchmark problems, using a model of flow over an obstacle, under various configurations characterizing the statistical features of the uncertain viscosity, and we demonstrate its effectiveness by extensive numerical experiments.
引用
收藏
页码:1275 / 1300
页数:26
相关论文
共 50 条
  • [31] STOCHASTIC NAVIER-STOKES EQUATIONS
    BENSOUSSAN, A
    ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) : 267 - 304
  • [32] Stabilization of Navier-Stokes Equations
    Barbu, Viorel
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2008, 26 (1-2): : 107 - 116
  • [33] New subgrid artificial viscosity Galerkin methods for the Navier-Stokes equations
    Galvin, Keith J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (1-4) : 242 - 250
  • [34] Navier-Stokes equations with delays
    Caraballo, T
    Real, J
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2014): : 2441 - 2453
  • [35] On modifications of the Navier-Stokes equations
    Kobelkov, Georgij M.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2015, 30 (02) : 87 - 93
  • [36] An Efficient Multiblock Navier-Stokes Flows Solver
    Li, Guangning
    Li, Fengwei
    Zhou, Zhihong
    Sang, Weimin
    2010 INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATION (ICEC 2010), 2010, : 77 - 80
  • [37] Navier-Stokes Spectral Solver in a Finite Cylinder
    Auteri, F.
    Biava, M.
    Quartapelle, L.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 8 (03) : 663 - 689
  • [38] Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity
    Tadmor, Eitan
    Zhong, Weigang
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2006, 3 (03) : 529 - 559
  • [39] A note on the evolution Navier-Stokes equations with a pressure-dependent viscosity
    Gazzola, F
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (05): : 760 - 773
  • [40] Navier-Stokes equations with Navier boundary condition
    Amrouche, Cherif
    Rejaiba, Ahmed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (17) : 5091 - 5112