A Low-Rank Solver for the Navier-Stokes Equations with Uncertain Viscosity

被引:10
|
作者
Lee, Kookjin [1 ,2 ]
Elman, Howard C. [1 ,3 ]
Sousedik, Bedrich [4 ]
机构
[1] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[2] Sandia Natl Labs, Extreme Scale Data Sci & Analyt Dept, Livermore, CA 94550 USA
[3] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
[4] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2019年 / 7卷 / 04期
基金
美国国家科学基金会;
关键词
stochastic Galerkin method; Navier-Stokes equations; low-rank approximation; ITERATIVE SOLVERS; POLYNOMIAL CHAOS; DECOMPOSITION; ALGORITHM;
D O I
10.1137/17M1151912
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an iterative low-rank approximation method for the solution of the steady-state stochastic Navier-Stokes equations with uncertain viscosity. The method is based on linearization schemes using Picard and Newton iterations and stochastic finite element discretizations of the linearized problems. For computing the low-rank approximate solution, we adapt the nonlinear iterations to an inexact and low-rank variant, where the solution of the linear system at each nonlinear step is approximated by a quantity of low rank. This is achieved by using a tensor variant of the GMRES method as a solver for the linear systems. We explore the inexact low-rank nonlinear iteration with a set of benchmark problems, using a model of flow over an obstacle, under various configurations characterizing the statistical features of the uncertain viscosity, and we demonstrate its effectiveness by extensive numerical experiments.
引用
收藏
页码:1275 / 1300
页数:26
相关论文
共 50 条
  • [21] Navier-Stokes equations in rotation form: A robust multigrid solver for the velocity problem
    Olshanskii, MA
    Reusken, A
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (05): : 1683 - 1706
  • [22] A fully coupled solver for incompressible Navier-Stokes equations using operator splitting
    Marinova, RS
    Christov, CI
    Marinov, TT
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2003, 17 (05) : 371 - 385
  • [23] A strong conservative Riemann solver for the solution of the coupled Maxwell and Navier-Stokes equations
    Thompson, Richard J.
    Wilson, Andrew
    Moeller, Trevor
    Merkle, Charles L.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 258 : 431 - 450
  • [24] Recasting Navier-Stokes equations
    Reddy, M. H. Lakshminarayana
    Dadzie, S. Kokou
    Ocone, Raffaella
    Borg, Matthew K.
    Reese, Jason M.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (10):
  • [25] NAVIER-STOKES EQUATIONS ON THE β-PLANE
    Al-Jaboori, Mustafa A. H.
    Wirosoetisno, Djoko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03): : 687 - 701
  • [26] Partial and full hyper-viscosity for Navier-Stokes and primitive equations
    Hussein, Amru
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (04) : 3003 - 3030
  • [27] A parallel solver for unsteady incompressible 3D Navier-Stokes equations
    Garbey, M
    Vassilevski, YV
    PARALLEL COMPUTING, 2001, 27 (04) : 363 - 389
  • [28] FRACTIONAL NAVIER-STOKES EQUATIONS
    Cholewa, Jan W.
    Dlotko, Tomasz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 2967 - 2988
  • [29] Euler and Navier-Stokes equations
    Constantin, Peter
    PUBLICACIONS MATEMATIQUES, 2008, 52 (02) : 235 - 265
  • [30] Parallel Newton-Krylov-Schur Flow Solver for the Navier-Stokes Equations
    Osusky, Michal
    Zingg, David W.
    AIAA JOURNAL, 2013, 51 (12) : 2833 - 2851