Investigating the Impact of Delivery System Design on the Efficacy of Self-Amplifying RNA Vaccines

被引:38
|
作者
Anderluzzi, Giulia [1 ,2 ]
Lou, Gustavo [1 ,2 ]
Gallorini, Simona [2 ]
Brazzoli, Michela [2 ]
Johnson, Russell [3 ]
O'Hagan, Derek T. [3 ]
Baudner, Barbara C. [2 ]
Perrie, Yvonne [1 ]
机构
[1] Univ Strathclyde, Strathclyde Inst Pharm & Biomed Sci, Glasgow G4 0RE, Lanark, Scotland
[2] GSK, I-53100 Siena 1, Italy
[3] GSK, Rockville, MD USA
基金
欧盟地平线“2020”;
关键词
self-amplifying RNA; liposomes; polymeric nanoparticles; solid lipid nanoparticles; emulsions; antigen expression; immunogenicity; SOLID-LIPID NANOPARTICLES; GENE-THERAPY; ADJUVANT FORMULATIONS; PROTECTIVE EFFICACY; NONVIRAL DELIVERY; IMMUNE-RESPONSES; DNA VACCINATION; SIRNA DELIVERY; PLASMID DNA; LIPOSOMES;
D O I
10.3390/vaccines8020212
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
messenger RNA (mRNA)-based vaccines combine the positive attributes of both live-attenuated and subunit vaccines. In order for these to be applied for clinical use, they require to be formulated with delivery systems. However, there are limited in vivo studies which compare different delivery platforms. Therefore, we have compared four different cationic platforms: (1) liposomes, (2) solid lipid nanoparticles (SLNs), (3) polymeric nanoparticles (NPs) and (4) emulsions, to deliver a self-amplifying mRNA (SAM) vaccine. All formulations contained either the non-ionizable cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or dimethyldioctadecylammonium bromide (DDA) and they were characterized in terms of physico-chemical attributes,in vitro transfection efficiency and in vivo vaccine potency. Our results showed that SAM encapsulating DOTAP polymeric nanoparticles, DOTAP liposomes and DDA liposomes induced the highest antigen expression in vitro and, from these, DOTAP polymeric nanoparticles were the most potent in triggering humoral and cellular immunity among candidates in vivo.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Enhanced immune responses following heterologous vaccination with self-amplifying RNA and mRNA COVID-19 vaccines
    Elliott, Tamara
    Cheeseman, Hannah M.
    Evans, Abbey B.
    Day, Suzanne
    McFarlane, Leon R.
    O'Hara, Jessica
    Kalyan, Mohini
    Amini, Fahimah
    Cole, Tom
    Winston, Alan
    Fidler, Sarah
    Pollock, Katrina M.
    Harker, James A.
    Shattock, Robin J.
    PLOS PATHOGENS, 2022, 18 (10)
  • [42] Heterologous vaccination regimens with self-amplifying RNA and adenoviral COVID vaccines induce robust immune responses in mice
    Alexandra J. Spencer
    Paul F. McKay
    Sandra Belij-Rammerstorfer
    Marta Ulaszewska
    Cameron D. Bissett
    Kai Hu
    Karnyart Samnuan
    Anna K. Blakney
    Daniel Wright
    Hannah R. Sharpe
    Ciaran Gilbride
    Adam Truby
    Elizabeth R. Allen
    Sarah C. Gilbert
    Robin J. Shattock
    Teresa Lambe
    Nature Communications, 12
  • [43] Heterologous vaccination regimens with self-amplifying RNA and adenoviral COVID vaccines induce robust immune responses in mice
    Spencer, Alexandra J.
    McKay, Paul F.
    Belij-Rammerstorfer, Sandra
    Ulaszewska, Marta
    Bissett, Cameron D.
    Hu, Kai
    Samnuan, Karnyart
    Blakney, Anna K.
    Wright, Daniel
    Sharpe, Hannah R.
    Gilbride, Ciaran
    Truby, Adam
    Allen, Elizabeth R.
    Gilbert, Sarah C.
    Shattock, Robin J.
    Lambe, Teresa
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [44] The role of helper lipids in optimising nanoparticle formulations of self-amplifying RNA
    Barbieri, Beatriz D.
    Peeler, David J.
    Samnuan, Karnyart
    Day, Suzanne
    Hu, Kai
    Sallah, Hadijatou J.
    Tregoning, John S.
    McKay, Paul F.
    Shattock, Robin J.
    JOURNAL OF CONTROLLED RELEASE, 2024, 374 : 280 - 292
  • [45] Targeting prostein (SLC45A3) and ERG for interception of prostate cancer using self-amplifying RNA vaccines
    Shoemaker, R.
    Erasmus, J.
    Berglund, P.
    Marshall, J.
    Koboziev, Y.
    Beckman, B.
    Cholewa, B.
    Reed, S.
    EUROPEAN JOURNAL OF CANCER, 2024, 211 : S119 - S120
  • [46] Design and development of mRNA and self-amplifying mRNA vaccine nanoformulations
    Omidi, Yadollah
    Pourseif, Mohammad M.
    Ansari, Rais A.
    Barar, Jaleh
    NANOMEDICINE, 2024, 19 (30) : 2699 - 2725
  • [47] Self-amplifying RNA in lipid nanoparticles: a next-generation vaccine?
    Alexandra Flemming
    Nature Reviews Drug Discovery, 2012, 11 : 749 - 749
  • [48] Innate Inhibiting Proteins Enhance Expression and Immunogenicity of Self-Amplifying RNA
    Blakney, Anna K.
    McKay, Paul F.
    Bouton, Clement R.
    Hu, Kai
    Samnuan, Karnyart
    Shattock, Robin J.
    MOLECULAR THERAPY, 2021, 29 (03) : 1174 - 1185
  • [49] Induction of an IFN-Mediated Antiviral Response by a Self-Amplifying RNA Vaccine: Implications for Vaccine Design
    Pepini, Timothy
    Pulichino, Anne-Marie
    Carsillo, Thomas
    Carlson, Alicia L.
    Sari-Sarraf, Farid
    Ramsauer, Katrin
    Debasitis, Jason C.
    Maruggi, Giulietta
    Otten, Gillis R.
    Geall, Andrew J.
    Yu, Dong
    Ulmer, Jeffrey B.
    Iavarone, Carlo
    JOURNAL OF IMMUNOLOGY, 2017, 198 (10): : 4012 - 4024
  • [50] Induction of Broad-Based Immunity and Protective Efficacy by Self-amplifying mRNA Vaccines Encoding Influenza Virus Hemagglutinin
    Brazzoli, Michela
    Magini, Diletta
    Bonci, Alessandra
    Buccato, Scilla
    Giovani, Cinzia
    Kratzer, Roland
    Zurli, Vanessa
    Mangiavacchi, Simona
    Casini, Daniele
    Brito, Luis M.
    De Gregorio, Ennio
    Mason, Peter W.
    Ulmer, Jeffrey B.
    Geall, Andrew J.
    Bertholet, Sylvie
    JOURNAL OF VIROLOGY, 2016, 90 (01) : 332 - 344