Investigating the Impact of Delivery System Design on the Efficacy of Self-Amplifying RNA Vaccines

被引:38
|
作者
Anderluzzi, Giulia [1 ,2 ]
Lou, Gustavo [1 ,2 ]
Gallorini, Simona [2 ]
Brazzoli, Michela [2 ]
Johnson, Russell [3 ]
O'Hagan, Derek T. [3 ]
Baudner, Barbara C. [2 ]
Perrie, Yvonne [1 ]
机构
[1] Univ Strathclyde, Strathclyde Inst Pharm & Biomed Sci, Glasgow G4 0RE, Lanark, Scotland
[2] GSK, I-53100 Siena 1, Italy
[3] GSK, Rockville, MD USA
基金
欧盟地平线“2020”;
关键词
self-amplifying RNA; liposomes; polymeric nanoparticles; solid lipid nanoparticles; emulsions; antigen expression; immunogenicity; SOLID-LIPID NANOPARTICLES; GENE-THERAPY; ADJUVANT FORMULATIONS; PROTECTIVE EFFICACY; NONVIRAL DELIVERY; IMMUNE-RESPONSES; DNA VACCINATION; SIRNA DELIVERY; PLASMID DNA; LIPOSOMES;
D O I
10.3390/vaccines8020212
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
messenger RNA (mRNA)-based vaccines combine the positive attributes of both live-attenuated and subunit vaccines. In order for these to be applied for clinical use, they require to be formulated with delivery systems. However, there are limited in vivo studies which compare different delivery platforms. Therefore, we have compared four different cationic platforms: (1) liposomes, (2) solid lipid nanoparticles (SLNs), (3) polymeric nanoparticles (NPs) and (4) emulsions, to deliver a self-amplifying mRNA (SAM) vaccine. All formulations contained either the non-ionizable cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or dimethyldioctadecylammonium bromide (DDA) and they were characterized in terms of physico-chemical attributes,in vitro transfection efficiency and in vivo vaccine potency. Our results showed that SAM encapsulating DOTAP polymeric nanoparticles, DOTAP liposomes and DDA liposomes induced the highest antigen expression in vitro and, from these, DOTAP polymeric nanoparticles were the most potent in triggering humoral and cellular immunity among candidates in vivo.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Charge neutralized poly(β-amino ester) polyplex nanoparticles for delivery of self-amplifying RNA
    Dastgerdi, Nazgol Karimi
    Gumus, Nurcan
    Bayraktutan, Hulya
    Jackson, Darryl
    Polra, Krunal
    Mckay, Paul F.
    Atyabi, Fatemeh
    Dinarvand, Rassoul
    Shattock, Robin J.
    Martinez-Pomares, Luisa
    Gurnani, Pratik
    Alexander, Cameron
    NANOSCALE ADVANCES, 2024, 6 (05): : 1409 - 1422
  • [32] Reinventing the nucleic acid vaccine with self-amplifying RNA
    AJ Geall
    GR Otten
    A Hekele
    W Bogers
    H Oostermeijer
    P Mooij
    K Gerrit
    E Verschoor
    K Banerjee
    Y Cu
    CW Beard
    LA Brito
    JB Ulmer
    CW Mandl
    SW Barnett
    Retrovirology, 9
  • [33] Self-Amplifying RNA Approach for Protein Replacement Therapy
    Papukashvili, Dimitri
    Rcheulishvili, Nino
    Liu, Cong
    Ji, Yang
    He, Yunjiao
    Wang, Peng George
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)
  • [34] Self-amplifying RNA COVID-19 vaccine
    Wayne, Christopher J.
    Blakney, Anna K.
    CELL, 2024, 187 (08)
  • [35] Reinventing the nucleic acid vaccine with self-amplifying RNA
    Geall, A. J.
    Otten, G. R.
    Hekele, A.
    Bogers, W.
    Oostermeijer, H.
    Mooij, P.
    Gerrit, K.
    Verschoor, E.
    Banerjee, K.
    Cu, Y.
    Beard, C. W.
    Brito, L. A.
    Ulmer, J. B.
    Mandl, C. W.
    Barnett, S. W.
    RETROVIROLOGY, 2012, 9
  • [36] Rational design of self-amplifying virus-like vesicles with Ebola virus glycoprotein as vaccines
    Zhang, Hong-Qing
    Zhang, Ya-Nan
    Deng, Cheng-Lin
    Zhu, Qin-Xuan
    Zhang, Zhe-Rui
    Li, Xiao-Dan
    Yuan, Zhi-Ming
    Zhang, Bo
    MOLECULAR THERAPY, 2024, 32 (10) : 3695 - 3711
  • [37] Self-Amplifying RNA Vaccines for Venezuelan Equine Encephalitis Virus Induce Robust Protective Immunogenicity in Mice
    Samsa, Marcelo M.
    Dupuy, Lesley C.
    Beard, Clayton W.
    Six, Carolyn M.
    Schmaljohn, Connie S.
    Mason, Peter W.
    Geall, Andrew J.
    Ulmer, Jeffrey B.
    Yu, Dong
    MOLECULAR THERAPY, 2019, 27 (04) : 850 - 865
  • [38] Delivery vehicle and route of administration influences self-amplifying RNA biodistribution, expression kinetics, and reactogenicity
    Bathula, Nuthan Vikas
    Friesen, Josh J.
    Casmil, Irafasha C.
    Wayne, Christopher J.
    Liao, Suiyang
    Soriano, Shekinah K. V.
    Ho, Chia Hao
    Strumpel, Anneke
    Blakney, Anna K.
    JOURNAL OF CONTROLLED RELEASE, 2024, 374 : 28 - 38
  • [39] Accelerating the Production of Self-Amplifying mRNA (saRNA) Vaccines Using Microfluidics
    Abbina, Srinivas
    Son, Helena
    Chemmannur, Sijo
    Harvie, Pierrot
    Zhang, Ariel
    Jain, Nikita
    Abraham, Suraj
    Blakney, Anna
    Thampatty, Sitalakshmi
    Higgins, R.
    Balgi, Aruna
    Cronin, Magnus
    Darwish, G.
    Jeffs, Lloyd
    Thomas, Anitha
    Shattock, R.
    Geall, Andy
    MOLECULAR THERAPY, 2021, 29 (04) : 231 - 232
  • [40] Development of self-amplifying RNA vaccines targeting prostate tissue-restricted and tumor-associated antigens
    Shoemaker, Robert H.
    Erasmus, Jesse H.
    Berglund, Peter
    Marshall, Jason D.
    Koboziev, Yuri
    Beckman, Bradley M.
    Cholewa, Brian D.
    Reed, Steven G.
    CANCER RESEARCH, 2024, 84 (06)