Investigating the Impact of Delivery System Design on the Efficacy of Self-Amplifying RNA Vaccines

被引:38
|
作者
Anderluzzi, Giulia [1 ,2 ]
Lou, Gustavo [1 ,2 ]
Gallorini, Simona [2 ]
Brazzoli, Michela [2 ]
Johnson, Russell [3 ]
O'Hagan, Derek T. [3 ]
Baudner, Barbara C. [2 ]
Perrie, Yvonne [1 ]
机构
[1] Univ Strathclyde, Strathclyde Inst Pharm & Biomed Sci, Glasgow G4 0RE, Lanark, Scotland
[2] GSK, I-53100 Siena 1, Italy
[3] GSK, Rockville, MD USA
基金
欧盟地平线“2020”;
关键词
self-amplifying RNA; liposomes; polymeric nanoparticles; solid lipid nanoparticles; emulsions; antigen expression; immunogenicity; SOLID-LIPID NANOPARTICLES; GENE-THERAPY; ADJUVANT FORMULATIONS; PROTECTIVE EFFICACY; NONVIRAL DELIVERY; IMMUNE-RESPONSES; DNA VACCINATION; SIRNA DELIVERY; PLASMID DNA; LIPOSOMES;
D O I
10.3390/vaccines8020212
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
messenger RNA (mRNA)-based vaccines combine the positive attributes of both live-attenuated and subunit vaccines. In order for these to be applied for clinical use, they require to be formulated with delivery systems. However, there are limited in vivo studies which compare different delivery platforms. Therefore, we have compared four different cationic platforms: (1) liposomes, (2) solid lipid nanoparticles (SLNs), (3) polymeric nanoparticles (NPs) and (4) emulsions, to deliver a self-amplifying mRNA (SAM) vaccine. All formulations contained either the non-ionizable cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or dimethyldioctadecylammonium bromide (DDA) and they were characterized in terms of physico-chemical attributes,in vitro transfection efficiency and in vivo vaccine potency. Our results showed that SAM encapsulating DOTAP polymeric nanoparticles, DOTAP liposomes and DDA liposomes induced the highest antigen expression in vitro and, from these, DOTAP polymeric nanoparticles were the most potent in triggering humoral and cellular immunity among candidates in vivo.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Nonviral delivery of self-amplifying RNA vaccines
    Geall, Andrew J.
    Verma, Ayush
    Otten, Gillis R.
    Shaw, Christine A.
    Hekele, Armin
    Banerjee, Kaustuv
    Cu, Yen
    Beard, Clayton W.
    Brito, Luis A.
    Krucker, Thomas
    O'Hagan, Derek T.
    Singh, Manmohan
    Mason, Peter W.
    Valiante, Nicholas M.
    Dormitzer, Philip R.
    Barnett, Susan W.
    Rappuoli, Rino
    Ulmer, Jeffrey B.
    Mandl, Christian W.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (36) : 14604 - 14609
  • [2] Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines
    Blakney, Anna K.
    McKay, Paul F.
    Hu, Kai
    Samnuan, Karnyart
    Jain, Nikita
    Brown, Andrew
    Thomas, Anitha
    Rogers, Paul
    Polra, Krunal
    Sallah, Hadijatou
    Yeow, Jonathan
    Zhu, Yunqing
    Stevens, Molly M.
    Geall, Andrew
    Shattock, Robin J.
    JOURNAL OF CONTROLLED RELEASE, 2021, 338 : 201 - 210
  • [3] Self-Amplifying RNA Viruses as RNA Vaccines
    Lundstrom, Kenneth
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (14) : 1 - 29
  • [4] Self-amplifying RNA vaccines for infectious diseases
    Kristie Bloom
    Fiona van den Berg
    Patrick Arbuthnot
    Gene Therapy, 2021, 28 : 117 - 129
  • [5] Self-amplifying RNA vaccines for infectious diseases
    Bloom, Kristie
    van den Berg, Fiona
    Arbuthnot, Patrick
    GENE THERAPY, 2021, 28 (3-4) : 117 - 129
  • [6] Formulation, inflammation, and RNA sensing impact the immunogenicity of self-amplifying RNA vaccines
    Tregoning, John S.
    Stirling, David C.
    Wang, Ziyin
    Flight, Katie E.
    Brown, Jonathan C.
    Blakney, Anna K.
    McKay, Paul F.
    Cunliffe, Robert F.
    Murugaiah, Valarmathy
    Fox, Christopher B.
    Beattie, Mitchell
    Tam, Ying K.
    Johansson, Cecilia
    Shattock, Robin J.
    MOLECULAR THERAPY-NUCLEIC ACIDS, 2023, 31 : 29 - 42
  • [7] Steps towards licensure of self-amplifying RNA vaccines
    Wilbrink, Maarten F.
    Herfst, Sander
    de Vries, Rory D.
    LANCET INFECTIOUS DISEASES, 2025, 25 (03): : 247 - 248
  • [8] Delivery of self-amplifying RNA vaccines in in vitro reconstituted virus-like particles
    Biddlecome, Adam
    Habte, Habtom H.
    McGrath, Katherine M.
    Sambanthamoorthy, Sharmila
    Wurm, Melanie
    Sykora, Martina M.
    Knobler, Charles M.
    Lorenz, Ivo C.
    Lasaro, Marcio
    Elbers, Knut
    Gelbart, William M.
    PLOS ONE, 2019, 14 (06):
  • [9] Self-Amplifying mRNA Vaccines
    Brito, Luis A.
    Kommareddy, Sushma
    Maione, Domenico
    Uematsu, Yasushi
    Giovani, Cinzia
    Scorza, Francesco Berlanda
    Otten, Gillis R.
    Yu, Dong
    Mandl, Christian W.
    Mason, Peter W.
    Dormitzer, Philip R.
    Ulmer, Jeffrey B.
    Geall, Andrew J.
    NONVIRAL VECTORS FOR GENE THERAPY: PHYSICAL METHODS AND MEDICAL TRANSLATION, 2015, 89 : 179 - 233
  • [10] Self-amplifying RNA virus vectors for drug delivery
    Lundstrom, Kenneth
    EXPERT OPINION ON DRUG DELIVERY, 2025, 22 (02) : 181 - 195