LOW REGULARITY WELL-POSEDNESS FOR THE 3D KLEIN - GORDON - SCHRODINGER SYSTEM

被引:7
|
作者
Pecher, Hartmut [1 ]
机构
[1] Berg Univ Wuppertal, Fachbereich Math & Nat Wissensch, D-42097 Wuppertal, Germany
关键词
Klein - Gordon - Schrodinger system; well-posedness; Fourier restriction norm method; ILL-POSEDNESS; UNIQUENESS; ZAKHAROV;
D O I
10.3934/cpaa.2012.11.1081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Klein-Gordon-Schrodinger system in 3D is shown to be locally well-posed for Schrodinger data in H-s and wave data in H-sigma x H sigma-1, if s > -1/4 sigma > -1/2, sigma - 2s > 3/2 and sigma - 2 < s < sigma + 1. This result is optimal up to the endpoints in the sense that the local flow map is not C-2 otherwise. It is also shown that (unconditional) uniqueness holds for s = sigma = 0 in the natural solution space C-0 ([0, T], L-2) x C-0 ([0, T], L-2) x C-0 ([0, T], H-1/2). This solution exists even globally by Colliander, Holmer and Tzirakis [6]. The proofs are based on new well-posedness results for the Zakharov system by Bejenaru, Herr, Holmer and Tataru [3], and Bejenaru and Herr [4].
引用
收藏
页码:1081 / 1096
页数:16
相关论文
共 50 条