LOW REGULARITY WELL-POSEDNESS FOR THE 3D KLEIN - GORDON - SCHRODINGER SYSTEM

被引:7
作者
Pecher, Hartmut [1 ]
机构
[1] Berg Univ Wuppertal, Fachbereich Math & Nat Wissensch, D-42097 Wuppertal, Germany
关键词
Klein - Gordon - Schrodinger system; well-posedness; Fourier restriction norm method; ILL-POSEDNESS; UNIQUENESS; ZAKHAROV;
D O I
10.3934/cpaa.2012.11.1081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Klein-Gordon-Schrodinger system in 3D is shown to be locally well-posed for Schrodinger data in H-s and wave data in H-sigma x H sigma-1, if s > -1/4 sigma > -1/2, sigma - 2s > 3/2 and sigma - 2 < s < sigma + 1. This result is optimal up to the endpoints in the sense that the local flow map is not C-2 otherwise. It is also shown that (unconditional) uniqueness holds for s = sigma = 0 in the natural solution space C-0 ([0, T], L-2) x C-0 ([0, T], L-2) x C-0 ([0, T], H-1/2). This solution exists even globally by Colliander, Holmer and Tzirakis [6]. The proofs are based on new well-posedness results for the Zakharov system by Bejenaru, Herr, Holmer and Tataru [3], and Bejenaru and Herr [4].
引用
收藏
页码:1081 / 1096
页数:16
相关论文
共 17 条
[1]  
Akahori T., THESIS
[2]  
Akahori T., 2006, HOKKAIDO MATH J, V35, P779
[3]   On the 2D Zakharov system with L2 Schrodinger data [J].
Bejenaru, I. ;
Herr, S. ;
Holmer, J. ;
Tataru, D. .
NONLINEARITY, 2009, 22 (05) :1063-1089
[4]   Convolutions of singular measures and applications to the Zakharov system [J].
Bejenaru, Ioan ;
Herr, Sebastian .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (02) :478-506
[5]  
Bourgain J., 1997, Selecta Math. (N.S.), V3, P115
[6]   Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrodinger systems [J].
Colliander, James ;
Holmer, Justin ;
Tzirakis, Nikolaos .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (09) :4619-4638
[7]   On the Cauchy problem for the Zakharov system [J].
Ginibre, J ;
Tsutsumi, Y ;
Velo, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :384-436
[8]  
Holmer J., 2007, ELECT J DIFFERENTIAL, V2007, P1
[9]   Uniqueness of finite energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations [J].
Masmoudi, N ;
Nakanishi, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 243 (01) :123-136
[10]   Uniqueness of Solutions for Zakharov Systems [J].
Masmoudi, Nader ;
Nakanishi, Kenji .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2009, 52 (02) :233-253