The research on the application of electronic nose in discriminate the rice varieties

被引:0
作者
Yu Huichun [1 ]
Meng Miaojuan [1 ]
Yin Yong [1 ]
机构
[1] Henan Univ Sci & Technol, Dept Food & Bioengn, Luoyang 471003, Peoples R China
来源
2013 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS) | 2013年
关键词
electronic nose; rice variety identification; pattern recognition;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to identify rapidly and avoid hybrids of different rice varieties, electronic nose (E-nose) is used to test rice of different varieties and valid information is obtained. Five types of features are extracted from the obtained information. The different rice varieties are distinguished by principal component analysis (PCA), Fisher discriminant analysis (FDA) and RBF neural network, the results of the three identification methods are compared and analyzed. The results show that: different rice varieties can be distinguished with the proper methods of feature extraction and pattern recognition; it is an effective way to distinguish different rice varieties by the E-nose.
引用
收藏
页码:449 / 454
页数:6
相关论文
共 10 条
[1]   Discrimination between different samples of olive oil using variable selection techniques and modified fuzzy artmap neural networks [J].
Brezmes, J ;
Cabré, P ;
Rojo, S ;
Llobet, E ;
Vilanova, X ;
Correig, X .
IEEE SENSORS JOURNAL, 2005, 5 (03) :463-470
[2]   Drift reduction of gas sensor by wavelet and principal component analysis [J].
Ding, H ;
Liu, JH ;
Shen, ZR .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 96 (1-2) :354-363
[3]   Electronic nose based tea quality standardization [J].
Dutta, R ;
Kashwan, KR ;
Bhuyan, M ;
Hines, EL ;
Gardner, JW .
NEURAL NETWORKS, 2003, 16 (5-6) :847-853
[4]   Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach [J].
Dutta, R ;
Hines, EL ;
Gardner, JW ;
Kashwan, KR ;
Bhuyan, A .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 94 (02) :228-237
[5]   The novel EOS835 electronic nose and data analysis for evaluating coffee ripening [J].
Falasconi, M ;
Pardo, M ;
Sberveglieri, G ;
Riccò, I ;
Bresciani, A .
SENSORS AND ACTUATORS B-CHEMICAL, 2005, 110 (01) :73-80
[6]   Electronic nose for wine discrimination [J].
García, A ;
Aleixandre, A ;
Gutiérrez, J ;
Horrillo, MC .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 113 (02) :911-916
[7]   Shelf life determination by electronic nose: application to milk [J].
Labreche, S ;
Bazzo, S ;
Cade, S ;
Chanie, E .
SENSORS AND ACTUATORS B-CHEMICAL, 2005, 106 (01) :199-206
[8]   Multisensor for fish quality determination [J].
Olafsdottir, G ;
Nesvadba, P ;
Di Natale, C ;
Careche, M ;
Oehlenschäger, J ;
Tryggvadóttir, SV ;
Schubring, R ;
Kroeger, M ;
Heia, K ;
Esaiassen, M ;
Macagnano, A ;
Jorgensen, BA .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2004, 15 (02) :86-93
[9]   Neural-network-integrated electronic nose system for identification of spoiled beef [J].
Panigrahi, S ;
Balasubramanian, S ;
Gu, H ;
Logue, C ;
Marchello, M .
LWT-FOOD SCIENCE AND TECHNOLOGY, 2006, 39 (02) :135-145
[10]   Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat [J].
Rajamäki, T ;
Alakomi, HL ;
Ritvanen, T ;
Skyttä, ES ;
Smolander, M ;
Ahvenainen, R .
FOOD CONTROL, 2006, 17 (01) :5-13