Acoustic focusing with engineered node locations for high-performance microfluidic particle separation

被引:35
作者
Fong, Erika J. [1 ,2 ]
Johnston, Amanda C. [1 ]
Notton, Timothy [3 ,6 ]
Jung, Seung-Yong [3 ,5 ]
Rose, Klint A. [1 ]
Weinberger, Leor S. [3 ,4 ,5 ]
Shusteff, Maxim [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[3] Gladstone Inst, Dept Virol & Immunol, San Francisco, CA 94158 USA
[4] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA
[5] Univ Calif San Francisco, Calif Inst Quantitat Biol QB3, San Francisco, CA 94158 USA
[6] Univ Calif San Francisco, Joint Grad Grp Bioengn, San Francisco, CA 94158 USA
关键词
ULTRASOUND STANDING-WAVE; SUSPENDED PARTICLES; FLOW; CELLS; ACOUSTOPHORESIS; SURFACE; MANIPULATION; DRIVEN; CHIP; SIZE;
D O I
10.1039/c4an00034j
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Acoustofluidic devices for manipulating microparticles in fluids are appealing for biological sample processing due to their gentle and high-speed capability of sorting cell-scale objects. Such devices are generally limited to moving particles toward locations at integer fractions of the fluid channel width (1/2, 1/4, 1/6, etc.). In this work, we introduce a unique approach to acoustophoretic device design that overcomes this constraint, allowing us to design the particle focusing location anywhere within the microchannel. This is achieved by fabricating a second fluid channel in parallel with the sample channel, separated from it by a thin silicon wall. The fluids in both channels participate to create the ultrasound resonance, while only one channel processes the sample, thus de-coupling the fluidic and acoustic boundaries. The wall placement and the relative widths of the adjacent channels define the particle focusing location. We investigate the operating characteristics of a range of these devices to determine the configurations that enable effective particle focusing and separation. The results show that a sufficiently thin wall negligibly affects focusing efficiency and location compared to a single channel without a wall, validating the success of this design approach without compromising separation performance. Using these principles to design and fabricate an optimized device configuration, we demonstrate high-efficiency focusing of microspheres, as well as separation of cell-free viruses from mammalian cells. These "transparent wall" acoustic devices are capable of over 90% extraction efficiency with 10 mm microspheres at 450 mu L min(-1), and of separating cells (98% purity), from viral particles (70% purity) at 100 mu L min(-1).
引用
收藏
页码:1192 / 1200
页数:9
相关论文
共 56 条
[1]   High-throughput, temperature-controlled microchannel acoustophoresis device made with rapid prototyping [J].
Adams, Jonathan D. ;
Ebbesen, Christian L. ;
Barnkob, Rune ;
Yang, Allen H. J. ;
Soh, H. Tom ;
Bruus, Henrik .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2012, 22 (07)
[2]   Microfluidic, Label-Free Enrichment of Prostate Cancer Cells in Blood Based on Acoustophoresis [J].
Augustsson, Per ;
Magnusson, Cecilia ;
Nordin, Maria ;
Lilja, Hans ;
Laurell, Thomas .
ANALYTICAL CHEMISTRY, 2012, 84 (18) :7954-7962
[3]  
Augustsson P, 2011, LAB CHIP, V11, P4152, DOI [10.1039/c1lc20637k, 10.1039/C1lc20637k]
[4]   Decomplexing biofluids using microchip based acoustophoresis [J].
Augustsson, Per ;
Persson, Jonas ;
Ekstrom, Simon ;
Ohlin, Mats ;
Laurell, Thomas .
LAB ON A CHIP, 2009, 9 (06) :810-818
[5]   Microfluidics for cell separation [J].
Bhagat, Ali Asgar S. ;
Bow, Hansen ;
Hou, Han Wei ;
Tan, Swee Jin ;
Han, Jongyoon ;
Lim, Chwee Teck .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2010, 48 (10) :999-1014
[6]  
BRODY JP, 1996, P SOL STAT SENS ACT, P105
[7]   Acoustofluidics 10: Scaling laws in acoustophoresis [J].
Bruus, Henrik .
LAB ON A CHIP, 2012, 12 (09) :1578-1586
[8]   Contrast agent-free sonoporation: The use of an ultrasonic standing wave microfluidic system for the delivery of pharmaceutical agents [J].
Carugo, Dario ;
Ankrett, Dyan N. ;
Glynne-Jones, Peter ;
Capretto, Lorenzo ;
Boltryk, Rosemary J. ;
Zhang, Xunli ;
Townsend, Paul A. ;
Hill, Martyn .
BIOMICROFLUIDICS, 2011, 5 (04)
[9]   Microfluidics-based diagnostics of infectious diseases in the developing world [J].
Chin, Curtis D. ;
Laksanasopin, Tassaneewan ;
Cheung, Yuk Kee ;
Steinmiller, David ;
Linder, Vincent ;
Parsa, Hesam ;
Wang, Jennifer ;
Moore, Hannah ;
Rouse, Robert ;
Umviligihozo, Gisele ;
Karita, Etienne ;
Mwambarangwe, Lambert ;
Braunstein, Sarah L. ;
van de Wijgert, Janneke ;
Sahabo, Ruben ;
Justman, Jessica E. ;
El-Sadr, Wafaa ;
Sia, Samuel K. .
NATURE MEDICINE, 2011, 17 (08) :1015-U138
[10]   A NOVEL ULTRASONIC RESONANCE FIELD DEVICE FOR THE RETENTION OF ANIMAL-CELLS [J].
DOBLHOFFDIER, O ;
GAIDA, T ;
KATINGER, H ;
BURGER, W ;
GROSCHL, M ;
BENES, E .
BIOTECHNOLOGY PROGRESS, 1994, 10 (04) :428-432