A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber

被引:61
作者
Sun, Yuping [1 ]
Liu, Xianguo [2 ]
Feng, Chao [2 ]
Fan, Jincheng [2 ]
Lv, Yaohui [2 ]
Wang, Yiran [2 ]
Li, Chengtao [2 ]
机构
[1] Anhui Univ Technol, Ctr Engn Practice & Innovat Educ, Maanshan 243002, Peoples R China
[2] Anhui Univ Technol, Sch Mat Sci & Engn, Anhui Key Lab Met Mat & Proc, Maanshan 243002, Peoples R China
基金
中国国家自然科学基金;
关键词
Core-shell; Nanowires; Hydrothermal synthesis; Microwave absorption; MICROWAVE-ABSORPTION PROPERTIES; PERMITTIVITY; NANOCAPSULES; PERFORMANCE; POLYANILINE; SHELL;
D O I
10.1016/j.jallcom.2013.10.063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present paper presents a facile hydrothermal method to synthesize FeNi3@C nanowires by reducing Ni(NO3)(2)center dot 6H(2)O and Fe(NO3)(2)center dot 9H(2)O with hydrazine hydrate in ethanol and glucose solution. The FeNi3@C nanowires have diameters ranging from 5 to 15 nm and length ranging from 150 to 250 nm, which are self assembled by FeNi3@C nanocapsules with onion-like carbon shells. The electromagnetic properties of FeNi3@C nanowires-paraffin composites have been investigated in detail. The Cole-Cole semicircle approach is adopted to explain the dielectric resonance, due to a cooperative consequence of the core/shell interfaces and the dielectric carbon shells. The coexistence of natural resonance and exchange resonance result in strong magnetic loss. For 2.0 mm thickness layer, an optimal reflection loss (RL) of -43.3 dB is observed at 9.91 GHz and RL exceeding -10 dB is obtained at 8.7-13.78 GHz. The absorbent with a thickness of 1.2 mm has a RL of -28.49 dB at 18.0 GHz. The FeNi3@C nanowires can be a potential material for fabricating microwave devices, due to the synergy of dielectric loss and magnetic loss and the quarter-wavelength cancellation. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:688 / 692
页数:5
相关论文
共 36 条
[1]   Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes [J].
Che, RC ;
Peng, LM ;
Duan, XF ;
Chen, Q ;
Liang, XL .
ADVANCED MATERIALS, 2004, 16 (05) :401-+
[2]   Porous Fe3O4/Carbon Core/Shell Nanorods: Synthesis and Electromagnetic Properties [J].
Chen, Yu-Jin ;
Xiao, Gang ;
Wang, Tie-Shi ;
Ouyang, Qiu-Yun ;
Qi, Li-Hong ;
Ma, Yang ;
Gao, Peng ;
Zhu, Chun-Ling ;
Cao, Mao-Sheng ;
Jin, Hai-Bo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (28) :13603-13608
[3]   Characterization and microwave resonance in nanocrystalline FeCoNi flake composite [J].
Deng, L. J. ;
Zhou, P. H. ;
Xie, J. L. ;
Zhang, L. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (10)
[4]   Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations [J].
Dong, X. L. ;
Zhang, X. F. ;
Huang, H. ;
Zuo, F. .
APPLIED PHYSICS LETTERS, 2008, 92 (01)
[5]   Manipulated electromagnetic losses by integrating chemically heterogeneous components in Fe-based core/shell architecture [J].
Huang, Hao ;
Zhang, Xue-Feng ;
Lv, Bo ;
Xue, Fang-Hong ;
Shah, Asif ;
Su, Lei ;
Yan, Jing-Guo ;
Yao, Man ;
Dong, Xing-Long .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (08)
[6]   Fabrications of broad-band RF-absorber composed of planar hexagonal ferrites [J].
Inui, T ;
Koniski, K ;
Oda, K .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (05) :3148-3150
[7]   Microwave attenuation properties of W-type barium ferrite BaZn2-xCoxFe16O27 composites [J].
Li, ZW ;
Chen, L ;
Wu, Y ;
Ong, CK .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (01) :534-539
[8]   Magnetic and electromagnetic wave absorption properties of α-Fe/Z-type Ba-ferrite nanocomposites [J].
Liu, JR ;
Itoh, M ;
Machida, K .
APPLIED PHYSICS LETTERS, 2006, 88 (06)
[9]   Microwave-absorption properties of ZnO-coated iron nanocapsules [J].
Liu, X. G. ;
Geng, D. Y. ;
Meng, H. ;
Shang, P. J. ;
Zhang, Z. D. .
APPLIED PHYSICS LETTERS, 2008, 92 (17)
[10]   Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles [J].
Liu, X. G. ;
Ou, Z. Q. ;
Geng, D. Y. ;
Han, Z. ;
Jiang, J. J. ;
Liu, W. ;
Zhang, Z. D. .
CARBON, 2010, 48 (03) :891-897