Serotonergic mechanisms in amyotrophic lateral sclerosis

被引:58
作者
Sandyk, Reuven [1 ]
机构
[1] SUNY Farmingdale, Sch Engn Technol, Carrick Inst Clin Ergon Rehabil & Appl Neurosci, Farmingdale, NY 11735 USA
关键词
amyotrophic lateral sclerosis; 5-HT; 5-HTP; glutamate; motoneuron; serotonin;
D O I
10.1080/00207450600754087
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Serotonin (5-HT) has been intimately linked with global regulation of motor behavior, local control of motoneuron excitability, functional recovery of spinal motoneurons as well as neuronal maturation and aging. Selective degeneration of motoneurons is the pathological hallmark of amyotrophic lateral sclerosis (ALS). Motoneurons that are preferentially affected in ALS are also densely innervated by 5-HT neurons (e.g., trigeminal, facial, ambiguus, and hypoglossal brainstem nuclei as well as ventral horn and motor cortex). Conversely, motoneuron groups that appear more resistant to the process of neurodegerieration in ALS (e.g., oculomotor, trochlear, and abducens nuclei) as well as the cerebellum receive only sparse 5-HT input. The glutamate excitotoxicity theory maintains that in ALS degeneration of motoneurons is caused by excessive glutamate neurotransmission, which is neurotoxic. Because of its facilitatory effects on glutaminergic motoneuron excitation, 5-HT may be pivotal to the pathogenesis and therapy of ALS. 5-HT levels as well as the concentrations 5-hydroxyindole acetic acid (5-HIAA), the major metabolite of 5-HT, are reduced in postmortem spinal cord tissue of ALS patients indicating decreased 5-HT release. Furthermore, cerebrospinal fluid levels of tryptophan, a precursor of 5-HT, are decreased in patients with ALS and plasma concentrations of tryptophan are also decreased with the lowest levels found in the most severely affected patients. In ALS progressive degeneration of 5-HT neurons would result in a compensatory increase in glutamate excitation of motoneurons. Additionally, because 5-HT, acting through pfesynaptic 5-HT1B receptors, inhibits glutamatergic synaptic transmission, lowered 5-HT activity would lead to increased synaptic glutamate release. Furthermore, 5-HT is a precursor of melatonin, which inhibits glutamate release and glutamate-induced neurotoxicity. Thus, progressive degeneration of 5-HT neurons affecting motoneuron activity constitutes the prime mover of the disease and its progression and treatment of ALS needs to be focused primarily on boosting 5-HT functions (e.g., pharmacologically via its precursors, reuptake inhibitors, selective 5-HT1A receptor agonists/5-HT2 receptor antagonists, and electrically through transcranial administration of AC pulsed picotesta electromagnetic fields) to prevent excessive glutamate activity in the motoneurons. In fact, 5HT1A and 5HT2 receptor agonists have been shown to prevent glutamate-induced neurotoxicity in primary cortical cell cultures and the 5-HT precursor 5-hydroxytryptophan (5-HTP) improved locomotor function and survival of transgenic SOD1 G93A mice, an animal model of ALS.
引用
收藏
页码:775 / 826
页数:52
相关论文
共 331 条
[1]   Frontotemporal white matter changes in amyotrophic lateral sclerosis [J].
Abrahams, S ;
Goldstein, LH ;
Suckling, J ;
Ng, V ;
Simmons, A ;
Chitnis, X ;
Atkins, L ;
Williams, SCR ;
Leigh, PN .
JOURNAL OF NEUROLOGY, 2005, 252 (03) :321-331
[2]   Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release [J].
Aghajanian, GK ;
Marek, GJ .
BRAIN RESEARCH, 1999, 825 (1-2) :161-171
[3]   Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells [J].
Aghajanian, GK ;
Marek, GJ .
NEUROPHARMACOLOGY, 1997, 36 (4-5) :589-599
[4]  
Airapetyan KV, 2000, ZH NEVROPATOL PSIKH, V100, P33
[5]  
Alvarez FJ, 1998, J COMP NEUROL, V393, P69
[6]   TREATMENT OF UNCONTROLLED CRYING AFTER STROKE [J].
ANDERSEN, G .
DRUGS & AGING, 1995, 6 (02) :105-111
[7]   Regional brain responses to serotonin in major depressive disorder [J].
Anderson, AD ;
Oquendo, MA ;
Parsey, RV ;
Milak, MS ;
Campbell, C ;
Mann, JJ .
JOURNAL OF AFFECTIVE DISORDERS, 2004, 82 (03) :411-417
[8]   Long-lasting recovery of locomotor function in chronic spinal rat following chronic combined pharmacological stimulation of serotonergic receptors with 8-OHDPAT and quipazine [J].
Antri, M ;
Barthe, JY ;
Mouffle, C ;
Orsal, D .
NEUROSCIENCE LETTERS, 2005, 384 (1-2) :162-167
[9]   Locomotor recovery in the chronic spinal rat:: effects of long-term treatment with a 5-HT2 agonist [J].
Antri, M ;
Orsal, D ;
Barthe, JY .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2002, 16 (03) :467-476
[10]   5-HT1A receptors are involved in short- and long-term processes responsible for 5-HT-induced locomotor function recovery in chronic spinal rat [J].
Antri, M ;
Mouffle, C ;
Orsal, D ;
Barthe, JY .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2003, 18 (07) :1963-1972