A mixed-integer optimization framework for the synthesis and analysis of regulatory networks

被引:6
|
作者
Foteinou, Panagiota T. [1 ]
Yang, Eric [1 ]
Saharidis, Georges K. [2 ]
Ierapetritou, Marianthi G. [2 ]
Androulakis, Ioannis P. [1 ,2 ]
机构
[1] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Chem & Biochem Engn, Piscataway, NJ 08854 USA
关键词
Bioinformatics; Mixed integer linear optimization; Gene regulation; ESCHERICHIA-COLI K-12; SACCHAROMYCES-CEREVISIAE; TRANSCRIPTIONAL REGULATION; TYRR PROTEIN; DNA-BINDING; EXPRESSION; GENE; REPRESSOR; ACTIVATOR; MODEL;
D O I
10.1007/s10898-007-9266-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Motivation: A novel mixed-integer optimization framework is proposed for the design and analysis of regulatory networks. The model combines gene expression data and prior biological knowledge regarding the potential for regulatory interactions between genes and their corresponding transcription factors. The formalism provides significant advantages over available modeling methodologies in that the complexity of the regulatory network can be explicitly taken into account, multiple alternative structures can be systematically generated and finally robust and biological significant regulators can be rigorously identified. The original non-convex mixed integer reformulation is appropriately linearized and the resulting MILP is effectively optimized using standard solvers. The versatility is demonstrated using gene expression and binding data from an E. coli case study during transition from glucose to acetate as the sole carbon source.
引用
收藏
页码:263 / 276
页数:14
相关论文
共 50 条
  • [1] A mixed-integer optimization framework for the synthesis and analysis of regulatory networks
    Panagiota T. Foteinou
    Eric Yang
    Georges K. Saharidis
    Marianthi G. Ierapetritou
    Ioannis P. Androulakis
    Journal of Global Optimization, 2009, 43 : 263 - 276
  • [2] MISO: mixed-integer surrogate optimization framework
    Juliane Müller
    Optimization and Engineering, 2016, 17 : 177 - 203
  • [3] MISO: mixed-integer surrogate optimization framework
    Mueller, Juliane
    OPTIMIZATION AND ENGINEERING, 2016, 17 (01) : 177 - 203
  • [4] Sparse convex optimization toolkit: a mixed-integer framework
    Olama, Alireza
    Camponogara, Eduardo
    Kronqvist, Jan
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (06): : 1269 - 1295
  • [5] Designing Networks: A Mixed-Integer Linear Optimization Approach
    Gounaris, Chrysanthos E.
    Rajendran, Karthikeyan
    Kevrekidis, Ioannis G.
    Floudas, Christodoulos A.
    NETWORKS, 2016, 68 (04) : 283 - 301
  • [6] A mixed-integer approximation of robust optimization problems with mixed-integer adjustments
    Kronqvist, Jan
    Li, Boda
    Rolfes, Jan
    OPTIMIZATION AND ENGINEERING, 2024, 25 (03) : 1271 - 1296
  • [7] Identification of regulatory structure and kinetic parameters of biochemical networks via mixed-integer dynamic optimization
    Guillen-Gosalbez, Gonzalo
    Miro, Antoni
    Alves, Rui
    Sorribas, Albert
    Jimenez, Laureano
    BMC SYSTEMS BIOLOGY, 2013, 7
  • [8] Analysis and design of metabolic reaction networks via mixed-integer linear optimization
    Hatzimanikatis, V
    Floudas, CA
    Bailey, JE
    AICHE JOURNAL, 1996, 42 (05) : 1277 - 1292
  • [9] Mixed-integer nonlinear optimization
    Belotti, Pietro
    Kirches, Christian
    Leyffer, Sven
    Linderoth, Jeff
    Luedtke, James
    Mahajan, Ashutosh
    ACTA NUMERICA, 2013, 22 : 1 - 131
  • [10] Mixed-integer dynamic optimization
    Allgor, RJ
    Barton, PI
    COMPUTERS & CHEMICAL ENGINEERING, 1997, 21 : S451 - S456