Uniformly convergent additive finite difference schemes for singularly perturbed parabolic reaction-diffusion systems

被引:17
作者
Clavero, C.
Gracia, J. L. [1 ]
机构
[1] Univ Zaragoza, IUMA, Zaragoza, Spain
关键词
Parabolic reaction-diffusion systems; Uniform convergence; Shishkin mesh; Additive schemes; Time and space semidiscretizations; COUPLED SYSTEM; NUMERICAL-METHOD; MESH;
D O I
10.1016/j.camwa.2013.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper 1D parabolic systems of two singularly perturbed equations of reaction diffusion type are examined. For the time discretization we consider two additive (or splitting) schemes defined on a uniform mesh and for the space discretization we use the classical central difference approximation defined on a Shishkin mesh. The uniform convergence of both the semidiscrete and the fully discrete problems is proved. The additive schemes are used to solve a test problem, and the results obtained with these schemes and the standard discretization using the backward Euler method are compared. Also, numerical results are presented in the case of systems of three equations. All the numerical results show the advantage in computational cost of the additive schemes compared to the standard discretization. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:655 / 670
页数:16
相关论文
共 24 条
[1]  
[Anonymous], 1968, Translation of Mathematical Monographs
[2]  
Bakhvalov N. S., 1969, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, V9, P841
[3]  
Barenblatt G. I., 1960, Journal of Applied Mathematics and Mechanics, V24, P1286, DOI DOI 10.1016/0021-8928(60)90107-6
[4]   A high order HODIE finite difference scheme for 1D parabolic singularly perturbed reaction-diffusion problems [J].
Clavero, C. ;
Gracia, J. L. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) :5067-5080
[5]   On the uniform convergence of a finite difference scheme for time dependent singularly perturbed reaction-diffusion problems [J].
Clavero, C. ;
Gracia, J. L. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (05) :1478-1488
[6]   An alternating direction scheme on a nonuniform mesh for reaction-diffusion parabolic problems [J].
Clavero, C ;
Jorge, JC ;
Lisbona, F ;
Shishkin, GI .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2000, 20 (02) :263-280
[7]  
Clavero C, 2010, INT J NUMER ANAL MOD, V7, P428
[8]  
Farrell P., 2000, Robust Computational Techniques for Boundary Layers
[9]  
Franklin V, 2013, INT J NUMER ANAL MOD, V10, P178
[10]   A uniformly convergent scheme for a system of reaction-diffusion equations [J].
Gracia, J. L. ;
Lisbona, F. J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (01) :1-16