Distributed implementation of standard oracle operators

被引:2
作者
Chefles, Anthony [1 ]
机构
[1] Hewlett Packard Labs, Quantum Informat Proc Grp, Bristol BS34 8QZ, Avon, England
来源
PHYSICAL REVIEW A | 2008年 / 78卷 / 06期
关键词
protocols; quantum communication; quantum computing; quantum entanglement;
D O I
10.1103/PhysRevA.78.062304
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The standard oracle operator corresponding to a function f is a unitary operator that computes this function coherently, i.e., it maintains superpositions. This operator acts on a bipartite system, where the subsystems are the input and output registers. In distributed quantum computation, these subsystems may be spatially separated, in which case we will be interested in its classical and entangling capacities. For an arbitrary function f, we show that the unidirectional classical and entangling capacities of this operator are log(2)(n(f)) bits (ebits) where n(f) is the number of different values this function can take. An optimal procedure for bidirectional classical communication with a standard oracle operator corresponding to a permutation on Z(M) is given. The bidirectional classical capacity of such an operator is found to be 2 log(2)(M) bits. The proofs of these capacities are facilitated by an optimal distributed protocol for the implementation of an arbitrary standard oracle operator.
引用
收藏
页数:5
相关论文
共 12 条
[1]   On the capacities of bipartite Hamiltonians and unitary gates [J].
Bennett, CH ;
Harrow, AW ;
Leung, DW ;
Smolin, JA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (08) :1895-1911
[2]   Entanglement, information, and multiparticle quantum operations [J].
Chefles, A. ;
Gilson, C.R. ;
Barnett, S.M. .
Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (03) :323141-323141
[3]   Unambiguous discrimination among oracle operators [J].
Chefles, Anthony ;
Kitagawa, Akira ;
Takeoka, Masahiro ;
Sasaki, Masahide ;
Twamley, Jason .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (33) :10183-10213
[4]   Nonlocal content of quantum operations [J].
Collins, D ;
Linden, N ;
Popescu, S .
PHYSICAL REVIEW A, 2001, 64 (03) :7
[5]   Optimal local implementation of nonlocal quantum gates [J].
Eisert, J ;
Jacobs, K ;
Papadopoulos, P ;
Plenio, MB .
PHYSICAL REVIEW A, 2000, 62 (05) :052317-052311
[6]   Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations [J].
Gottesman, D ;
Chuang, IL .
NATURE, 1999, 402 (6760) :390-393
[7]   Comparison of quantum oracles [J].
Kashefi, E ;
Kent, A ;
Vedral, V ;
Banaszek, K .
PHYSICAL REVIEW A, 2002, 65 (05) :503041-503044
[8]   Optimal creation of entanglement using a two-qubit gate [J].
Kraus, B ;
Cirac, JI .
PHYSICAL REVIEW A, 2001, 63 (06) :8
[9]   Optimal entanglement generation from quantum operations [J].
Leifer, MS ;
Henderson, L ;
Linden, N .
PHYSICAL REVIEW A, 2003, 67 (01) :7
[10]  
Nielsen M.A., 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744