Computation of bound states for 2D potentials using discrete basis

被引:2
作者
Al-Marzoug, S. M. [1 ,2 ]
Bahlouli, H. [1 ,2 ]
Abdelmonem, M. S. [1 ,2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Phys, Dhahran 31261, Saudi Arabia
[2] Saudi Ctr Theoret Phys, Dhahran, Saudi Arabia
关键词
bound states; Yukawa potential; J-matrix; Morse potential; DIATOMIC-MOLECULES; SCATTERING;
D O I
10.1080/00268976.2012.760053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using a suitable Laguerre basis set that ensures a tridiagonal matrix representation of the reference Hamiltonian, we were able to evaluate in closed form the matrix representation of the associated Hamiltonian for two exactly solvable 2D potentials. This enabled us to treat analytically the full Hamiltonian and compute the associated bound states spectrum as the eigenvalues of the associated analytical matrix representing their Hamiltonians. Finally we compared our results satisfactorily with those obtained using the Gauss quadrature numerical integration approach. PACS numbers: 03.65.Ge, 34.20.Cf, 03.65.Nk, 34.20.Gj
引用
收藏
页码:968 / 974
页数:7
相关论文
共 20 条
[1]  
Alhaidari A.D, 2005, PHYS REV, V20, P2657
[2]   Unified algebraic treatment of resonance [J].
Alhaidari, AD .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (12) :2657-2672
[3]   Analytical treatment of the oscillating Yukawa potential [J].
Bahlouli, H. ;
Abdelmonem, M. S. ;
Al-Marzoug, S. M. .
CHEMICAL PHYSICS, 2012, 393 (01) :153-156
[4]   COMMENTS ON HYDROGEN-ATOM IN 2 DIMENSIONS [J].
DASGUPTA, BB .
AMERICAN JOURNAL OF PHYSICS, 1981, 49 (02) :189-189
[5]   Ladder operators for the Morse potential [J].
Dong, SH ;
Lemus, R ;
Frank, A .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2002, 86 (05) :433-439
[6]  
Flugge S., 1994, Practical Quantum Mechanics, V1
[7]  
Gradshteyn I. S, 2007, TABLE INTEGRALS SERI, P809
[8]   ONE-DIMENSIONAL AND TWO-DIMENSIONAL HYDROGEN-ATOMS [J].
HASSOUN, GQ .
AMERICAN JOURNAL OF PHYSICS, 1981, 49 (02) :143-146
[9]   NEW L2 APPROACH TO QUANTUM SCATTERING - THEORY [J].
HELLER, EJ ;
YAMANI, HA .
PHYSICAL REVIEW A, 1974, 9 (03) :1201-1208
[10]   EXACTLY SOLVABLE NONCENTRAL POTENTIALS IN 2-DIMENSIONS AND 3-DIMENSIONS [J].
KHARE, A ;
BHADURI, RK .
AMERICAN JOURNAL OF PHYSICS, 1994, 62 (11) :1008-1014