All-Soluble All-Iron Aqueous Redox-Flow Battery

被引:242
作者
Gong, Ke [1 ]
Xu, Fei [1 ]
Grunewald, Jonathan B. [1 ]
Ma, Xiaoya [1 ]
Zhao, Yun [1 ]
Gu, Shuang [2 ]
Yan, Yushan [1 ]
机构
[1] Univ Delaware, Dept Chem & Biomol Engn, 150 Acad St, Newark, DE 19716 USA
[2] Wichita State Univ, Dept Mech Engn, 1845 Fairmount St, Wichita, KS 67260 USA
来源
ACS ENERGY LETTERS | 2016年 / 1卷 / 01期
关键词
CARBON-DIOXIDE; PERFORMANCE; COMPLEXES; MEMBRANES; CARRIER; CELL;
D O I
10.1021/acsenergylett.6b00049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rapid growth of intermittent renewable energy (e.g., wind and solar) demands low-cost and large-scale energy storage systems for smooth and reliable power output, where redox-flow batteries (RFBs) could find their niche. In this work, we introduce the first all-soluble all-iron RFB based on iron as the same redox-active element but with different coordination chemistries in alkaline aqueous system. The adoption of the same redox-active element largely alleviates the challenging problem of cross-contamination of metal ions in RFBs that use two redox-active elements. An all-soluble all-iron RFB is constructed by combining an iron triethanolamine redox pair (i.e., [Fe(TEOA)OH](-)/[Fe(TEOA)(OH)](2-)) and an iron cyanide redox pair (i.e., Fe(CN)(6)(3-)/Fe(CN)(6)(4-)), creating 1.34 V of formal cell voltage. Good performance and stability have been demonstrated, after addressing some challenges, including the crossover of the ligand agent. As exemplified by the all-soluble all-iron flow battery, combining redox pairs of the same redox-active element with different coordination chemistries could extend the spectrum of RFBs.
引用
收藏
页码:89 / 93
页数:5
相关论文
共 24 条
[1]   Dramatic performance gains in vanadium redox flow batteries through modified cell architecture [J].
Aaron, D. S. ;
Liu, Q. ;
Tang, Z. ;
Grim, G. M. ;
Papandrew, A. B. ;
Turhan, A. ;
Zawodzinski, T. A. ;
Mench, M. M. .
JOURNAL OF POWER SOURCES, 2012, 206 :450-453
[2]  
Adams G. B., 1979, Rechargeable alkaline zinc/ferricyanide battery: Final Report for the Period 29 September 1978-28 September 1979
[3]  
[Anonymous], 1980, J POWER SOURCES, V5, P384
[4]   An Alkaline Flow Battery Based on the Coordination Chemistry of Iron and Cobalt [J].
Arroyo-Curras, Netzahualcoyotl ;
Hall, Justin W. ;
Dick, Jeffrey E. ;
Jones, Richard A. ;
Bard, Allen J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (03) :A378-A383
[5]   SOLUTION REDOX COUPLES FOR ELECTROCHEMICAL ENERGY-STORAGE .1. IRON-(III)-IRON-(II) COMPLEXES WITH O-PHENANTHROLINE AND RELATED LIGANDS [J].
CHEN, YWD ;
SANTHANAM, KSV ;
BARD, AJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (07) :1460-1467
[6]   A zinc-iron redox-flow battery under $100 per kW h of system capital cost [J].
Gong, Ke ;
Ma, Xiaoya ;
Conforti, Kameron M. ;
Kuttler, Kevin J. ;
Grunewald, Jonathan B. ;
Yeager, Kelsey L. ;
Bazant, Martin Z. ;
Gu, Shuang ;
Yan, Yushan .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) :2941-2945
[7]   A multiple ion-exchange membrane design for redox flow batteries [J].
Gu, Shuang ;
Gong, Ke ;
Yan, Emily Z. ;
Yan, Yushan .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) :2986-2998
[8]  
Hagedorn N.H., 1984, NASA REDOX STORAGE S
[9]   Studies of Iron-Ligand Complexes for an All-Iron Flow Battery Application [J].
Hawthorne, Krista L. ;
Wainright, Jesse S. ;
Savinell, Robert F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (10) :A1662-A1671
[10]   CORRELATIONS BETWEEN KINETICS OF ELECTROLYTIC DISSOLUTION AND DEPOSITION OF IRON .1. ANODIC DISSOLUTION OF IRON [J].
HILBERT, F ;
MIYOSHI, Y ;
EICHKORN, G ;
LORENZ, WJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1971, 118 (12) :1919-&