Mapping HIV clustering: a strategy for identifying populations at high risk of HIV infection in sub-Saharan Africa

被引:74
作者
Cuadros, Diego F. [1 ,2 ]
Awad, Susanne F. [1 ]
Abu-Raddad, Laith J. [1 ,2 ,3 ]
机构
[1] Qatar Fdn Educ City, Weill Cornell Med Coll Qatar, Infect Dis Epidemiol Grp, Doha, Qatar
[2] Cornell Univ, Weill Cornell Med Coll, Dept Publ Hlth, New York, NY 10021 USA
[3] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, Seattle, WA 98104 USA
来源
INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS | 2013年 / 12卷
关键词
HIV; Spatial epidemiology; Disease mapping; Sub-Saharan Africa; Mathematical modeling; PREVALENCE; EPIDEMIC; TRANSMISSION; DISEASES; SPREAD; BIAS;
D O I
10.1186/1476-072X-12-28
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: The geographical structure of an epidemic is ultimately a consequence of the drivers of the epidemic and the population susceptible to the infection. The 'know your epidemic' concept recognizes this geographical feature as a key element for identifying populations at higher risk of HIV infection where prevention interventions should be targeted. In an effort to clarify specific drivers of HIV transmission and identify priority populations for HIV prevention interventions, we conducted a comprehensive mapping of the spatial distribution of HIV infection across sub-Saharan Africa (SSA). Methods: The main source of data for our study was the Demographic and Health Survey conducted in 20 countries from SSA. We identified and compared spatial clusters with high and low numbers of HIV infections in each country using Kulldorff spatial scan test. The test locates areas with higher and lower numbers of HIV infections than expected under spatial randomness. For each identified cluster, a likelihood ratio test was computed. A P-value was determined through Monte Carlo simulations to evaluate the statistical significance of each cluster. Results: Our results suggest stark geographic variations in HIV transmission patterns within and across countries of SSA. About 14% of the population in SSA is located in areas of intense HIV epidemics. Meanwhile, another 16% of the population is located in areas of low HIV prevalence, where some behavioral or biological protective factors appear to have slowed HIV transmission. Conclusions: Our study provides direct evidence for strong geographic clustering of HIV infection across SSA. This striking pattern of heterogeneity at the micro-geographical scale might reflect the fact that most HIV epidemics in the general population in SSA are not far from their epidemic threshold. Our findings identify priority geographic areas for HIV programming, and support the need for spatially targeted interventions in order to maximize the impact on the epidemic in SSA.
引用
收藏
页数:9
相关论文
共 31 条
[1]   A simulation study of three methods for detecting disease clusters [J].
Aamodt G. ;
Samuelsen S.O. ;
Skrondal A. .
International Journal of Health Geographics, 5 (1)
[2]   NoHIV stage is dominant in driving the HIV epidemic in sub-Saharan Africa [J].
Abu-Raddad, Laith J. ;
Longini, Ira A., Jr. .
AIDS, 2008, 22 (09) :1055-1061
[3]   Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa [J].
Abu-Raddad, Laith J. ;
Patnaik, Padmaja ;
Kublin, James G. .
SCIENCE, 2006, 314 (5805) :1603-1606
[4]   Have the explosive HIV epidemics in sub-Saharan Africa been driven by higher community viral load? [J].
Abu-Raddad, Laith J. ;
Barnabas, Ruanne V. ;
Janes, Holly ;
Weiss, Helen A. ;
Kublin, James G. ;
Longini, Ira M., Jr. ;
Wasserheit, Judith N. .
AIDS, 2013, 27 (06) :981-989
[5]   Genital Herpes Has Played a More Important Role than Any Other Sexually Transmitted Infection in Driving HIV Prevalence in Africa [J].
Abu-Raddad, Laith J. ;
Magaret, Amalia S. ;
Celum, Connie ;
Wald, Anna ;
Longini, Ira M., Jr. ;
Self, Steven G. ;
Corey, Lawrence .
PLOS ONE, 2008, 3 (05)
[6]  
[Anonymous], GLOB HIV AIDS RESP E
[7]  
[Anonymous], INFECT DIS HUMANS DY
[8]   Ecological and individual level analysis of risk factors for HIV infection in four urban populations in sub-Saharan Africa with different levels of HIV infection [J].
Auvert, B ;
Buvé, A ;
Ferry, B ;
Caraël, M ;
Morison, L ;
Lagarde, E ;
Robinson, NJ ;
Kahindo, M ;
Chege, J ;
Rutenberg, N ;
Musonda, R ;
Laourou, M ;
Akam, E .
AIDS, 2001, 15 :S15-S30
[9]   Characterizing HIV prevalence distribution across sub-populations at variable levels of sexual behavior [J].
Awad, S. ;
Cuadros, D. ;
Abu-Raddad, L. .
INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2012, 16 :E180-E181
[10]   Coitus, the proximate determinant of conception: Inter-country variance in sub-Saharan Africa [J].
Brown, MS .
JOURNAL OF BIOSOCIAL SCIENCE, 2000, 32 (02) :145-159