CONVERGENCE ANALYSIS OF SMOOTHING METHODS FOR OPTIMAL CONTROL OF STATIONARY VARIATIONAL INEQUALITIES WITH CONTROL CONSTRAINTS

被引:34
作者
Schiela, Anton [1 ]
Wachsmuth, Daniel [2 ]
机构
[1] Konrad Zuse Zentrum Informat Tech Berlin ZIB, D-14195 Berlin, Germany
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math RICAM, A-4040 Linz, Austria
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2013年 / 47卷 / 03期
关键词
Variational inequalities; optimal control; control constraints; regularization; C-stationarity; path-following; MATHEMATICAL PROGRAMS; COMPLEMENTARITY CONSTRAINTS;
D O I
10.1051/m2an/2012049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article an optimal control problem subject to a stationary variational inequality is investigated. The optimal control problem is complemented with pointwise control constraints. The convergence of a smoothing scheme is analyzed. There, the variational inequality is replaced by a semi-linear elliptic equation. It is shown that solutions of the regularized optimal control problem converge to solutions of the original one. Passing to the limit in the optimality system of the regularized problem allows to prove C-stationarity of local solutions of the original problem. Moreover, convergence rates with respect to the regularization parameter for the error in the control are obtained, which turn out to be sharp. These rates coincide with rates obtained by numerical experiments, which are included in the paper.
引用
收藏
页码:771 / 787
页数:17
相关论文
共 23 条
[1]  
[Anonymous], 1965, ANN I FOURIER, DOI DOI 10.5802/AIF.204
[2]  
[Anonymous], 1982, PURE APPL MATH
[3]  
Barbu V., 1984, MONOGRAPHS STUDIES M, V24
[4]   Optimal control of obstacle problems: Existence of Lagrange multipliers [J].
Bergounioux, M ;
Mignot, F .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2000, 5 :45-70
[5]  
Bonnans J.F., 2013, PERTURBATION ANAL OP
[6]  
BREZIS HR, 1968, B SOC MATH FR, V96, P153
[7]  
Casas E., 1996, Z. Anal. Anwend., V15, P687
[8]   IMPLICIT FUNCTION THEOREMS FOR GENERALIZED EQUATIONS [J].
DONTCHEV, AL .
MATHEMATICAL PROGRAMMING, 1995, 70 (01) :91-106
[9]   FIRST-ORDER OPTIMALITY CONDITIONS FOR ELLIPTIC MATHEMATICAL PROGRAMS WITH EQUILIBRIUM CONSTRAINTS VIA VARIATIONAL ANALYSIS [J].
Hintermueller, M. ;
Surowiec, T. .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (04) :1561-1593
[10]   A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs [J].
Hintermueller, M. ;
Kopacka, I. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 50 (01) :111-145