Triangle-free subgraphs with large fractional chromatic number

被引:0
作者
Mohar, Bojan [1 ]
Wu, Hehui [2 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC, Canada
[2] Fudan Univ, Shanghai Ctr Math Sci, Shanghai, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
chromatic number; fractional chromatic number; Erdos-Hajnal conjecture; COLORABLE GRAPHS;
D O I
10.1017/S0963548321000250
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is well known that for any integers k and g, there is a graph with chromatic number at least k and girth at least g. In 1960s, Erdos and Hajnal conjectured that for any k and g, there exists a number h(k,g), such that every graph with chromatic number at least h(k,g) contains a subgraph with chromatic number at least k and girth at least g. In 1977, Rodl proved the case when $g=4$ , for arbitrary k. We prove the fractional chromatic number version of Rodl's result.
引用
收藏
页码:136 / 143
页数:8
相关论文
共 18 条
[1]   A NOTE ON RAMSEY NUMBERS [J].
AJTAI, M ;
KOMLOS, J ;
SZEMEREDI, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 29 (03) :354-360
[2]  
[Anonymous], 2013, Algebraic Graph Theory
[3]   UNIQUELY COLORABLE GRAPHS WITH LARGE GIRTH [J].
BOLLOBAS, B ;
SAUER, N .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1976, 28 (06) :1340-1344
[4]  
Bukh B., INTERESTING PROBLEMS
[5]   A note on Thomassen's conjecture [J].
Dellamonica, Domingos, Jr. ;
Roedl, Vojtech .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2011, 101 (06) :509-515
[6]   On a Conjecture of Thomassen Concerning Subgraphs of Large Girth [J].
Dellamonica, Domingos, Jr. ;
Koubek, Vaclav ;
Martin, Daniel M. ;
Rodl, Vojtech .
JOURNAL OF GRAPH THEORY, 2011, 67 (04) :316-331
[7]  
Erdos P., 1958, Can. J. Math., V11, P34, DOI DOI 10.4153/CJM-1959-003-9
[8]  
Erds P., 1969, PROOF TECHNIQUES GRA, P27
[9]   THE RAMSEY NUMBER R(3,T) HAS ORDER OF MAGNITUDE T(2)/LOG-T [J].
KIM, JH .
RANDOM STRUCTURES & ALGORITHMS, 1995, 7 (03) :173-207
[10]   Every graph of sufficiently large average degree contains a C4-Free subgraph of large average degree [J].
Kühn, D ;
Osthus, D .
COMBINATORICA, 2004, 24 (01) :155-162