Uniqueness of rarefaction waves in multidimensional compressible Euler system

被引:33
作者
Feireisl, Eduard [1 ]
Kreml, Ondrej [1 ]
机构
[1] Acad Sci Czech Republic, Inst Math, CR-11567 Prague 1, Czech Republic
基金
欧洲研究理事会;
关键词
Compressible Euler system; uniqueness; rarefaction wave; Riemann problem; WEAK-STRONG UNIQUENESS; RIEMANN SOLUTIONS; GAS-DYNAMICS; BALANCE LAWS; EQUATIONS; STABILITY; FIELDS;
D O I
10.1142/S0219891615500149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that 1D rarefaction wave solutions are unique in the class of bounded entropy solutions to the multidimensional compressible Euler system. Such a result may be viewed as a counterpart of the recent examples of non-uniqueness of the shock wave solutions to the Riemann problem, where infinitely many solutions are constructed by the method of convex integration.
引用
收藏
页码:489 / 499
页数:11
相关论文
共 15 条
[1]   From kinetic equations to multidimensional isentropic gas dynamics before shocks [J].
Berthelin, F ;
Vasseur, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) :1807-1835
[2]   Vanishing viscosity solutions of nonlinear hyperbolic systems [J].
Bianchini, S ;
Bressan, A .
ANNALS OF MATHEMATICS, 2005, 161 (01) :223-342
[3]  
CHANG T., 1989, The Riemann Problem and Interaction of Waves in Gas Dynamics
[4]   Uniqueness and asymptotic stability of Riemann solutions for the compressible Euler equations [J].
Chen, GQ ;
Frid, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (03) :1103-1117
[5]   Uniqueness and stability of Riemann solutions with large oscillation in gas dynamics [J].
Chen, GQ ;
Frid, H ;
Li, YC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (02) :201-217
[6]   On the theory of divergence-measure fields and its applications [J].
Chen, GQ ;
Frid, H .
BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA, 2001, 32 (03) :401-433
[7]   Gauss-Green Theorem for Weakly Differentiable Vector Fields, Sets of Finite Perimeter, and Balance Laws [J].
Chen, Gui-Qiang ;
Torres, Monica ;
Ziemer, William P. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (02) :242-304
[8]   Global Ill-Posedness of the Isentropic System of Gas Dynamics [J].
Chiodaroli, Elisabetta ;
De Lellis, Camillo ;
Kreml, Ondrej .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (07) :1157-1190
[9]   On the Energy Dissipation Rate of Solutions to the Compressible Isentropic Euler System [J].
Chiodaroli, Elisabetta ;
Kreml, Ondrej .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 214 (03) :1019-1049
[10]  
DAFERMOS CM, 1979, ARCH RATION MECH AN, V70, P167, DOI 10.1007/BF00250353