Task analysis;
Feature extraction;
Quality assessment;
Predictive models;
National Institutes of Health;
Machine learning;
Citation function;
final review decision;
paper quality;
review score;
technology-assisted peer review;
D O I:
10.1109/ACCESS.2022.3225871
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
This study aims to develop a prediction model for paper quality assessment to support technology-assisted peer review. The prediction technique is intended to reduce the review burden, which is becoming a critical issue in today's paper submission process. However, most existing works on this topic were built by involving the reviewers' comments, which is considered unfair and inapplicable for reducing the review burden. Therefore, our prediction method relies only on features extracted from the paper to address this issue. The method covers three tasks as follows: two are classification tasks and one is a regression task. The classification tasks predict the final review decision (accepted-rejected) and estimate the paper quality (good-poor), while a regression task predicts the review scores. Additionally, the classification and regression tasks are implemented using three main features i.e., citing sentence features developed based on the labeling scheme of citation functions, regular sentence features created by applying the label of citation functions to non-citation text, and reference-based features constructed by identifying the source of citations. Furthermore, the classification experiments on the dataset obtained from the International Conference on Learning Representations 2017-2020 showed that our methods are more effective in the good-poor task than the accepted-rejected task by demonstrating the best accuracy of 0.75 and 0.73, respectively. Moreover, we also reached a satisfactory recall of 0.99 using only the citing sentence features to obtain as many good papers as possible in the good-poor task. Our regression experiments indicate that the best result in predicting the average review score is higher than the individual review score by showing Root Mean Square Error (RMSE) of 1.34 and 1.71, respectively.
机构:
Univ Michigan, Dept Urol, Ann Arbor, MI 48109 USA
Univ Copenhagen, Herlev & Gentofte Hosp, Dept Urol, Herlev, DenmarkUniv Michigan, Dept Urol, Ann Arbor, MI 48109 USA
Jensen, Christian Fuglesang S.
Khan, Omar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Urol, Ann Arbor, MI 48109 USAUniv Michigan, Dept Urol, Ann Arbor, MI 48109 USA
Khan, Omar
Sonksen, Jens
论文数: 0引用数: 0
h-index: 0
机构:
Univ Copenhagen, Herlev & Gentofte Hosp, Dept Urol, Herlev, DenmarkUniv Michigan, Dept Urol, Ann Arbor, MI 48109 USA
Sonksen, Jens
Fode, Mikkel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Copenhagen, Herlev & Gentofte Hosp, Dept Urol, Herlev, DenmarkUniv Michigan, Dept Urol, Ann Arbor, MI 48109 USA
Fode, Mikkel
Dupree, James M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Urol, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Obstet & Gynecol, Ann Arbor, MI 48109 USAUniv Michigan, Dept Urol, Ann Arbor, MI 48109 USA
Dupree, James M.
Shah, Tariq
论文数: 0引用数: 0
h-index: 0
机构:Univ Michigan, Dept Urol, Ann Arbor, MI 48109 USA
Shah, Tariq
Ohl, Dana A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Urol, Ann Arbor, MI 48109 USAUniv Michigan, Dept Urol, Ann Arbor, MI 48109 USA
机构:
SickKids Ctr Global Child Hlth, Int Program Evaluat Unit, Toronto, ON, Canada
Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON, CanadaVrije Univ Amsterdam, Athena Inst, Amsterdam, Netherlands
Abejirinde, Ibukun-Oluwa Omolade
Paton, Chris
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Ctr Trop Med & Global Hlth, Nuffield Dept Med, Oxford, EnglandVrije Univ Amsterdam, Athena Inst, Amsterdam, Netherlands
机构:
Univ Miami, Jackson Mem Hosp, Div Plast Reconstruct & Aesthet Surg, Miami, FL 33136 USAUniv Miami, Jackson Mem Hosp, Div Plast Reconstruct & Aesthet Surg, Miami, FL 33136 USA
Soltani, Ali M.
Keyes, Geoffrey R.
论文数: 0引用数: 0
h-index: 0
机构:
Amer Assoc Accreditat Ambulatory Surg Facil Inc A, Gurnee, IL USA
Univ So Calif, Keck Sch Med, Dept Plast Surg, Los Angeles, CA 90033 USAUniv Miami, Jackson Mem Hosp, Div Plast Reconstruct & Aesthet Surg, Miami, FL 33136 USA
Keyes, Geoffrey R.
Singer, Robert
论文数: 0引用数: 0
h-index: 0
机构:
Amer Assoc Accreditat Ambulatory Surg Facil Inc A, La Jolla, CA USAUniv Miami, Jackson Mem Hosp, Div Plast Reconstruct & Aesthet Surg, Miami, FL 33136 USA
Singer, Robert
Reed, Lawrence
论文数: 0引用数: 0
h-index: 0
机构:
New York Presbytarian Hosp, Weill Cornell Med Ctr, New York, NY USAUniv Miami, Jackson Mem Hosp, Div Plast Reconstruct & Aesthet Surg, Miami, FL 33136 USA
Reed, Lawrence
Fodor, Peter B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Med Ctr, Los Angeles, CA 90024 USAUniv Miami, Jackson Mem Hosp, Div Plast Reconstruct & Aesthet Surg, Miami, FL 33136 USA