Online Control of IPMSM Drives for Traction Applications Considering Machine Parameter and Inverter Nonlinearities

被引:63
作者
Hoang, Khoa Dang [1 ]
Aorith, Hawa K. A. [1 ,2 ]
机构
[1] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England
[2] AECOM, Leeds LS11 9AR, W Yorkshire, England
来源
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION | 2015年 / 1卷 / 04期
关键词
Dead-time compensation; flux-weakening (FW) control; interior permanent magnet synchronous machine (IPMSM); inverter nonlinearity; maximum torque per ampere (MTPA) control;
D O I
10.1109/TTE.2015.2477469
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, an online control method of interior permanent magnet synchronous machine (IPMSM) drives for traction applications considering machine parameter and inverter nonlinearities is presented. It is shown that the conventional technique using parameter information instantly extracted from premeasured parameter look-up tables (LUTs) only determines the local maximum torque per ampere (MTPA) operating point associated with this specific parameter information without evaluating the global MTPA achievement. Therefore, global MTPA operation may not be achieved for conventional online control IPMSM drives with extreme nonlinear machine parameters (e.g., short-period overload operations). Thus, a model-based correction method using stator flux adjustment is proposed for an online quasiglobal MTPA achievement. It is also proven that in the flux-weakening (FW) region, due to the inverter nonlinearities, a lower than expected maximum achievable torque for a demanded speed and a higher than expected current magnitude for a demanded torque may be obtained. Hence, an inverter nonlinearity compensation (INC) method exploiting the voltage feedback (FB) loop is introduced and its advantages over the conventional INC scheme are demonstrated. The proposed online control method is validated via measurements on a 10-kW IPMSM.
引用
收藏
页码:312 / 325
页数:14
相关论文
共 38 条
  • [1] Attaianese C, 2005, IEEE T IND APPL, V41, P1667, DOI [10.1109/TIA.2005.857472, 10.1109/TIA.2005.957472]
  • [2] Bae BH, 2003, IEEE IND APPLIC SOC, P898
  • [3] A general approach to energy optimization of hybrid electric vehicles
    Ceraolo, Massimo
    di Donato, Antonio
    Franceschi, Giulia
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2008, 57 (03) : 1433 - 1441
  • [4] Dead-time elimination for voltage source inverters
    Chen, Lihua
    Peng, Fang Zheng
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2008, 23 (02) : 574 - 580
  • [5] Torque Feedforward Control Technique for Permanent-Magnet Synchronous Motors
    Cheng, Bing
    Tesch, Tod R.
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (03) : 969 - 974
  • [6] Optimal Torque Control of Synchronous Machines Based on Finite-Element Analysis
    de Kock, Hugo W.
    Rix, Arnold J.
    Kamper, Maarten J.
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (01) : 413 - 419
  • [7] A Model-Predictive-Control-Based Torque Demand Control Approach for Parallel Hybrid Powertrains
    He, Lin
    Shen, Tielong
    Yu, Liangyao
    Feng, Nenglian
    Song, Jian
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2013, 62 (03) : 1041 - 1052
  • [8] Hoang KD, 2013, 2013 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), P152
  • [9] Hoang K. D., 2014, P IET INT C POW EL M, P1
  • [10] Holmes D., 2003, Pulse Width Modulation for PowerConverters: Principles and Practice