Concurrent multi-scale modelling and updating of long-span bridges using a multi-objective optimisation technique

被引:23
|
作者
Wang, Ying [1 ]
Li, Zhaoxia [1 ]
Wang, Chunmiao [1 ]
Wang, Hao [1 ]
机构
[1] Southeast Univ, Sch Civil Engn, Jiangsu Key Lab Engn Mech, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
concurrent multi-scale model; multi-objective optimisation technique; long-span bridges; model updating; model validation; DAMAGE;
D O I
10.1080/15732479.2012.683198
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper aims at developing an innovative technique of concurrent multi-objective optimisation for updating the multi-scale model of long-span bridges. A multi-scale model is established for the purpose of concurrently analysing the global response of the structure and nonlinear local damages in order to assess structural state and local damage evolution or deteriorating, respectively. A multi-objective optimisation technique is proposed in this work for concurrent multi-scale model updating, in which several key issues including the determination of the objective functions and constraint conditions, the multi-objective optimisation algorithm and how to find the optimal solution from many non-inferior solutions are studied. The proposed concurrent multi-objective optimisation technique is applied to update the initial multi-scale model of Runyang Suspension Bridge (RYSB) near Shanghai, and the updated model is validated by the data from the field tests conducted for obtaining the response in global (dynamic properties) and local levels.
引用
收藏
页码:1251 / 1266
页数:16
相关论文
共 50 条
  • [41] Multi-objective pump scheduling optimisation using evolutionary strategies
    Barán, B
    von Lücken, C
    Sotelo, A
    ADVANCES IN ENGINEERING SOFTWARE, 2005, 36 (01) : 39 - 47
  • [42] Multi-objective optimisation of cancer chemotherapy using evolutionary algorithms
    Petrovski, A
    McCall, J
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2001, 1993 : 531 - 545
  • [43] Search for targets in a risky environment using multi-objective optimisation
    Angley, Daniel
    Ristic, Branko
    Moran, William
    Himed, Braham
    IET RADAR SONAR AND NAVIGATION, 2019, 13 (01): : 123 - 127
  • [44] Optimisation of cutting parameters using a multi-objective genetic algorithm
    Solimanpur, M.
    Ranjdoostfard, F.
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2009, 47 (21) : 6019 - 6036
  • [45] Multi-objective optimisation of multipass turning by using a genetic algorithm
    Quiza Sardinas, Ramon
    Albelo Mengana, Jorge E.
    Davim, J. Paulo
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2009, 35 (1-2): : 134 - 144
  • [46] Multi-objective optimisation of turbomachinery blades using tabu search
    Kipouros, T
    Jaeggi, D
    Dawes, B
    Parks, G
    Savill, M
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 897 - 910
  • [47] Robust design optimisation using multi-objective evolutionary algorithms
    Lee, D. S.
    Gonzalez, L. F.
    Periaux, J.
    Srinivas, K.
    COMPUTERS & FLUIDS, 2008, 37 (05) : 565 - 583
  • [48] Tailoring left ventricular assist device cannula implantation using coupled multi-scale multi-objective optimization
    Dankano, Abubakar
    Prather, Ray
    Lozinski, Blake
    Divo, Eduardo
    Kassab, Alain
    DeCampli, William
    Medical Engineering and Physics, 2024, 125
  • [49] Tailoring left ventricular assist device cannula implantation using coupled multi-scale multi-objective optimization
    Dankano, Abubakar
    Prather, Ray
    Lozinski, Blake
    Divo, Eduardo
    Kassab, Alain
    DeCampli, William
    MEDICAL ENGINEERING & PHYSICS, 2024, 125
  • [50] RSVP performance evaluation using multi-objective evolutionary optimisation
    Komolafe, O
    Sventek, J
    IEEE Infocom 2005: The Conference on Computer Communications, Vols 1-4, Proceedings, 2005, : 2447 - 2457