Uniqueness Results for Ill-Posed Characteristic Problems in Curved Space-Times

被引:25
作者
Ionescu, Alexandru D. [1 ]
Klainerman, Sergiu [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
BLACK-HOLE; OPERATORS; CONTINUATION; COEFFICIENTS;
D O I
10.1007/s00220-008-0650-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove two uniqueness theorems concerning linear wave equations; the first theorem is in Minkowski space-times, while the second is in the domain of outer communication of a Kerr black hole. Both theorems concern ill-posed Cauchy problems on bifurcate, characteristic hypersurfaces. In the case of the Kerr space-time, the hypersurface is precisely the event horizon of the black hole. The uniqueness theorem in this case, based on two Carleman estimates, is intimately connected to our strategy to prove uniqueness of the Kerr black holes among smooth, stationary solutions of the Einstein-vacuum equations, as formulated in [14].
引用
收藏
页码:873 / 900
页数:28
相关论文
共 21 条
  • [1] A NON UNIQUENESS RESULT FOR OPERATORS OF PRINCIPAL TYPE
    ALINHAC, S
    BAOUENDI, MS
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1995, 220 (04) : 561 - 568
  • [2] [Anonymous], 1983, INT SERIES MONOGRAPH
  • [3] [Anonymous], 1991, Applied Mathematical Sciences
  • [4] Carleman T., 1939, ARK MAT ASTR FYS, V26
  • [5] AXISYMMETRIC BLACK HOLE HAS ONLY 2 DEGREES OF FREEDOM
    CARTER, B
    [J]. PHYSICAL REVIEW LETTERS, 1971, 26 (06) : 331 - +
  • [6] COHEN P, 1960, ONR TECHNICAL REPORT, V93
  • [7] FRIEDLAN.FG, 1973, P LOND MATH SOC, V27, P551
  • [8] FRIEDLANDER FG, 1967, J MATH MECH, V16, P907
  • [9] Hawking S.W., 1973, LARGE SCALE STRUCTUR
  • [10] HORMANDER L, 1996, GEOMETRICAL OPTICS R, V32, P179