Revisiting the energy efficiency and (potential) full-cell performance of lithium-ion batteries employing conversion/alloying-type negative electrodes

被引:34
作者
Asenbauer, Jakob [1 ,2 ]
Varzi, Alberto [1 ,2 ]
Passerini, Stefano [1 ,2 ]
Bresser, Dominic [1 ,2 ]
机构
[1] Helmholtz Inst Ulm HIU, Helmholtzstr 11, D-89081 Ulm, Germany
[2] Karlsruhe Inst Technol KIT, POB 3640, D-76021 Karlsruhe, Germany
关键词
Energy efficiency; Conversion: alloying; Lithium-ion anode; Battery; RESEARCH-AND-DEVELOPMENT; DOPED ZINC-OXIDE; ELECTROCHEMICAL PERFORMANCE; ANODES; IRON; NANOPARTICLES; CHALLENGES; STORAGE; LITHIATION; INSIGHTS;
D O I
10.1016/j.jpowsour.2020.228583
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The energy efficiency of new lithium-ion chemistries is a very important, but frequently not provided performance measure for new alternative active materials for application as negative and positive lithium-ion battery (LIB) electrodes. This is particularly true for those active materials, not hosting lithium cations via insertion mechanisms, but via alloying and/or conversion reactions. Herein, the energy efficiency of alternative negative electrode active materials hosting lithium via combined conversion and alloying processes and the impact factors on the energy efficiency of such compounds in complete battery cells (full-cells) is revisited. Specifically, the effect of (i) varying the relative contribution of the conversion and alloying reaction, (ii) limiting the specific capacity, (iii) pre-cycling and pre-lithiating the anode, as well as (iv) the choice of the active material for the positive electrode, is investigated. The results show that a proper combination of these measures may enable lithium-ion cells based on conversion/alloying anodes that provide energy efficiencies of >95%, accompanied by gravimetric energy densities that might outperform graphite-based lithium-ion cells.
引用
收藏
页数:10
相关论文
共 61 条
[41]   Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries [J].
Mueller, Franziska ;
Bresser, Dominic ;
Chakravadhanula, Venkata Sai Kiran ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2015, 299 :398-402
[42]   Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles [J].
Mueller, Franziska ;
Bresser, Dominic ;
Paillard, Elie ;
Winter, Martin ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2013, 236 :87-94
[43]  
Naoi K, 2008, ELECTROCHEM SOC INTE, V17, P34
[44]   High-Capacity Anode Materials for Lithium- Ion Batteries: Choice of Elements and Structures for Active Particles [J].
Nitta, Naoki ;
Yushin, Gleb .
PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2014, 31 (03) :317-336
[45]   Alloy Negative Electrodes for Li-Ion Batteries [J].
Obrovac, M. N. ;
Chevrier, V. L. .
CHEMICAL REVIEWS, 2014, 114 (23) :11444-11502
[46]   Metal hydrides for lithium-ion batteries [J].
Oumellal, Y. ;
Rougier, A. ;
Nazri, G. A. ;
Tarascon, J-M. ;
Aymard, L. .
NATURE MATERIALS, 2008, 7 (11) :916-921
[47]   Li-alloy based anode materials for Li secondary batteries [J].
Park, Cheol-Min ;
Kim, Jae-Hun ;
Kim, Hansu ;
Sohn, Hun-Joon .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3115-3141
[48]   High voltage nickel manganese spinel oxides for Li-ion batteries [J].
Patoux, Sebastien ;
Sannier, Lucas ;
Lignier, Helene ;
Reynier, Yvan ;
Bourbon, Carole ;
Jouanneau, Severine ;
Le Cras, Frederic ;
Martinet, Sebastien .
ELECTROCHIMICA ACTA, 2008, 53 (12) :4137-4145
[49]   Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries [J].
Poizot, P ;
Laruelle, S ;
Grugeon, S ;
Dupont, L ;
Tarascon, JM .
NATURE, 2000, 407 (6803) :496-499
[50]   Electroanalytical study of the viability of conversion reactions as energy storage mechanisms [J].
Ponrouch, Alexandre ;
Cabana, Jordi ;
Dugas, Romain ;
Slack, Jonathan L. ;
Rosa Palacin, M. .
RSC ADVANCES, 2014, 4 (68) :35988-35996