Elliptic equations with BMO nonlinearity in Reifenberg domains

被引:62
作者
Byun, Sun-Sig [1 ]
Wang, Lihe [2 ,3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[3] Xian Jiaotong Univ, Coll Sci, Xian 710049, Peoples R China
基金
美国国家科学基金会;
关键词
Elliptic equations; BMO space; Maximal function; Regularity theory;
D O I
10.1016/j.aim.2008.07.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given p epsilon [2, +infinity), we obtain the global W-1, p estimate for the weak solution of a boundary-value problem for an elliptic equation with BMO nonlinearity in a Reifenberg domain, assuming that the nonlinearity has sufficiently small BMO seminorm and that the boundary of the domain is sufficiently flat. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1937 / 1971
页数:35
相关论文
共 29 条
[1]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[2]  
[Anonymous], HARMONIC ANAL
[3]  
Auscher P, 2002, B UNIONE MAT ITAL, V5B, P487
[4]   Elliptic equations with BMO coefficients in Reifenberg domains [J].
Byun, SS ;
Wang, LH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) :1283-1310
[5]   LP-estimates for general Nonlinear elliptic equations [J].
Byun, Sun-Sig ;
Wang, Lihe .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (06) :3193-3221
[6]   Nonlinear elliptic equations with BMO coefficients in Reifenberg domains [J].
Byun, Sun-Sig ;
Wang, Lihe ;
Zhou, Shulin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (01) :167-196
[7]   Parabolic equations in time dependent Reifenberg domains [J].
Byun, Sun-Sig ;
Wang, Lihe .
ADVANCES IN MATHEMATICS, 2007, 212 (02) :797-818
[8]  
Caffarelli L. A., 1995, AM MATH SOC C PUBL, V43
[9]   INTERIOR A PRIORI ESTIMATES FOR SOLUTIONS OF FULLY NON-LINEAR EQUATIONS [J].
CAFFARELLI, LA .
ANNALS OF MATHEMATICS, 1989, 130 (01) :189-213
[10]  
Caffarelli LA, 1998, COMMUN PUR APPL MATH, V51, P1