Predictor ranking and false discovery proportion control in high-dimensional regression

被引:3
作者
Jeng, X. Jessie [1 ]
Chen, Xiongzhi [2 ]
机构
[1] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[2] Washington State Univ, Dept Math & Stat, Pullman, WA 99164 USA
基金
美国国家科学基金会;
关键词
Multiple testing; Penalized regression; Sparsity; Variable selection; CONFIDENCE-INTERVALS; VARIABLE SELECTION; INFERENCE; SPARSITY; LASSO; RATES; SLOPE;
D O I
10.1016/j.jmva.2018.12.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a ranking and selection procedure to prioritize relevant predictors and control false discovery proportion (FDP) in variable selection. Our procedure utilizes a new ranking method built upon the de-sparsified Lasso estimator. We show that the new ranking method achieves the optimal order of minimum non-zero effects in ranking relevant predictors ahead of irrelevant ones. Adopting the new ranking method, we develop a variable selection procedure to asymptotically control FDP at a user-specified level. We show that our procedure can consistently estimate the FDP of variable selection as long as the de-sparsified Lasso estimator is asymptotically normal. In simulations, our procedure compares favorably to existing methods in ranking efficiency and FOP control when the regression model is relatively sparse. Published by Elsevier Inc.
引用
收藏
页码:163 / 175
页数:13
相关论文
共 34 条
  • [1] CONTROLLING THE FALSE DISCOVERY RATE VIA KNOCKOFFS
    Barber, Rina Foygel
    Candes, Emmanuel J.
    [J]. ANNALS OF STATISTICS, 2015, 43 (05) : 2055 - 2085
  • [2] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [3] SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR
    Bickel, Peter J.
    Ritov, Ya'acov
    Tsybakov, Alexandre B.
    [J]. ANNALS OF STATISTICS, 2009, 37 (04) : 1705 - 1732
  • [4] Biltilmann P., 2011, STAT HIGH DIMENSIONA
  • [5] SLOPE-ADAPTIVE VARIABLE SELECTION VIA CONVEX OPTIMIZATION
    Bogdan, Malgorzata
    van den Berg, Ewout
    Sabatti, Chiara
    Su, Weijie
    Candes, Emmanuel J.
    [J]. ANNALS OF APPLIED STATISTICS, 2015, 9 (03) : 1103 - 1140
  • [6] Statistical significance in high-dimensional linear models
    Buehlmann, Peter
    [J]. BERNOULLI, 2013, 19 (04) : 1212 - 1242
  • [7] CONFIDENCE INTERVALS FOR HIGH-DIMENSIONAL LINEAR REGRESSION: MINIMAX RATES AND ADAPTIVITY
    Cai, T. Tony
    Guo, Zijian
    [J]. ANNALS OF STATISTICS, 2017, 45 (02) : 615 - 646
  • [8] ESTIMATING SPARSE PRECISION MATRIX: OPTIMAL RATES OF CONVERGENCE AND ADAPTIVE ESTIMATION
    Cai, T. Tony
    Liu, Weidong
    Zhou, Harrison H.
    [J]. ANNALS OF STATISTICS, 2016, 44 (02) : 455 - 488
  • [9] Panning for gold: "model-X' knockoffs for high dimensional controlled variable selection
    Candes, Emmanuel
    Fan, Yingying
    Janson, Lucas
    Lv, Jinchi
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2018, 80 (03) : 551 - 577
  • [10] Chen X., 2016, STRONG LAW LARGER NU