Annotation Technique for Health-Related Tweets Sentiment Analysis

被引:0
|
作者
Baccouche, Asma [1 ]
Garcia-Zapirain, Begonya [2 ]
Elmaghraby, Adel [1 ]
机构
[1] Univ Louisville, Comp Engn & Comp Sci, Louisville, KY 40292 USA
[2] Univ Deusto, eVida Lab, Bilbao, Spain
来源
2018 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT) | 2018年
关键词
Text Analysis; Twitter; Sentiment Analysis; Deep Learning; Automatic Annotation;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a novel implementation of an automatic labeling technique, oriented to health related Twitter annotation for three languages: English, French, and Arabic. Thus, sentiment analysis is performed. The presented technique relies on data preprocessing, allowing for automatic tweets annotation based on domain knowledge, Natural Language Processing (NLP), and sentiment-lexicon dictionaries. In order to conduct our experiments, we use Deep Learning technique for sentiment prediction. In particular, we implement a Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM). In training the model, we include both a domain-specific private dataset and a non-specific domain public dataset containing users' large reviews from Amazon, IMDB and Yelp, and an Arabic Sentiment Tweets Dataset (ASTD). Our overall performance evaluation shows that LSTM-RNN outperforms the literature's review for both English and Arabic datasets. It achieves an accuracy of 0.98, an F1-Score of 0.97, a precision of 0.98 and a recall of 0.97 on the English Twitter dataset; an accuracy of 0.92, an F1-Score of 0.91, a precision of 0.89 and a recall of 0.93 on the French Twitter dataset; and an accuracy of 0.83, an F1-Score of 0.82, a precision of 0.87 and a recall of 0.79 on the Arabic Twitter dataset.
引用
收藏
页码:382 / 387
页数:6
相关论文
共 50 条
  • [21] Detection of Fake Tweets Using Sentiment Analysis
    Monica C.
    Nagarathna N.
    SN Computer Science, 2020, 1 (2)
  • [22] ASAVACT: Arabic sentiment analysis for vaccine-related COVID-19 tweets using deep learning
    Alhumoud, Sarah
    Al Wazrah, Asma
    Alhussain, Laila
    Alrushud, Lama
    Aldosari, Atheer
    Altammami, Reema Nasser
    Almukirsh, Njood
    Alharbi, Hind
    Alshahrani, Wejdan
    PEERJ COMPUTER SCIENCE, 2023, 9 : 1 - 18
  • [23] Sentiment Analysis on Tweets with Punctuations, Emoticons, and Negations
    Cureg, Miks Q.
    De La Cruz, Juan Aurel D.
    Solomon, Juan Carlos A.
    Saharkhiz, Aresh T.
    Balan, Ariel Kelly D.
    Samonte, Mary Jane C.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (ICISS 2019), 2019, : 266 - 270
  • [24] Analysis and visualization of sentiment and emotion on crisis tweets
    1600, Springer Verlag (8683): : 64 - 67
  • [25] Sentiment Analysis of English Tweets Using RapidMiner
    Tripathi, Pragya
    Vishwakarma, Santosh Kr
    Lala, Ajay
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2015, : 668 - 672
  • [26] Sentiment analysis of tweets on social security and medicare
    Chakravarty, Unmesh Kumar
    Arifuzzaman, Shaikh
    SOCIAL NETWORK ANALYSIS AND MINING, 2024, 14 (01)
  • [27] A Fine Grain Sentiment Analysis with Semantics in Tweets
    Barba Gonzalez, Cristobal
    Garcia-Nieto, Jose
    Navas-Delgado, Ismael
    Aldana-Montes, Jose F.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2016, 3 (06): : 22 - 28
  • [28] Piegas: A System for Sentiment Analysis of Tweets in Portuguese
    Grandin, P.
    Adan, J. M.
    IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (07) : 3467 - 3473
  • [29] Sentiment Analysis of Tweets Including Emoji Data
    LeCompte, Travis
    Chen, Jianhua
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 793 - 798
  • [30] Sentiment Analysis of Health Care Tweets: Review of the Methods Used
    Gohil, Sunir
    Vuik, Sabine
    Darzi, Ara
    JMIR PUBLIC HEALTH AND SURVEILLANCE, 2018, 4 (02): : 72 - 81