Plasmonics with Doped Quantum Dots

被引:54
作者
Routzahn, Aaron L. [1 ]
White, Sarah L. [1 ]
Fong, Lam-Kiu [1 ]
Jain, Prashant K. [1 ,2 ,3 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
关键词
doping; localized surface plasmon resonances; nanoparticles; photonics; quantum dots; INFRARED-ABSORPTION; GOLD NANOPARTICLES; CHALCOCITE CU2S; THIN-FILMS; RESONANCE; SIZE; SCATTERING; NANOCRYSTALS; TRANSPORT; DYNAMICS;
D O I
10.1002/ijch.201200069
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We review the discovery of localized surface plasmon resonances (LSPRs) in doped semiconductor quantum dots (QDs), an advance that has extended nanoplasmonics to materials beyond the classic gamut of noble metals. The initial demonstrations of near-infrared LSPRs in QDs of heavily self-doped copper chalcogenides and conducting metal oxides are setting the broad stage for this new field. We describe the key properties of QD LSPRs. Although the essential physics of plasmon resonances are similar to that in metal nanoparticles, the attributes of QD LSPRs represent a paradigm shift from metal nanoplasmonics. Carrier doping of quantum dots allows access to tunable LSPRs in the wide frequency range from the THz to the near-infrared. Such composition or carrier density tunability is unique to semiconductor quantum dots and not achievable in metal nanoparticles. Most strikingly, semiconductor quantum dots allow plasmon resonances to be dynamically tuned or switched by active control of carriers. Semiconducting quantum dots thus represent the ideal building blocks for active plasmonics. A number of potential applications are discussed, including the use of plasmonic quantum dots as ultrasmall labels for biomedicine and electrochromic materials, the utility of LSPRs for probing nanoscale charge dynamics in semiconductors, and the exploitation of strong coupling between photons and excitons. Further advances in this field necessitate efforts toward generalizing plasmonic phenomena to a wider range of semiconductors, developing strategies for achieving controlled levels of doping and stabilizing them, investigating the spectroscopy of these systems on a fundamental level, and exploring their integration into optoelectronic devices.
引用
收藏
页码:983 / 991
页数:9
相关论文
共 48 条
[1]   Optical absorption spectra of nanocrystal gold molecules [J].
Alvarez, MM ;
Khoury, JT ;
Schaaff, TG ;
Shafigullin, MN ;
Vezmar, I ;
Whetten, RL .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (19) :3706-3712
[2]  
[Anonymous], [No title captured]
[3]   Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals [J].
Buonsanti, Raffaella ;
Llordes, Anna ;
Aloni, Shaul ;
Helms, Brett A. ;
Milliron, Delia J. .
NANO LETTERS, 2011, 11 (11) :4706-4710
[4]   Electrical transport through a single nanoscale semiconductor branch point [J].
Cui, Y ;
Banin, U ;
Björk, MT ;
Alivisatos, AP .
NANO LETTERS, 2005, 5 (07) :1519-1523
[5]   Quantitative Analysis of Localized Surface Plasmons Based on Molecular Probing [J].
Deeb, Claire ;
Bachelot, Renaud ;
Plain, Jerome ;
Baudrion, Anne-Laure ;
Jradi, Safi ;
Bouhelier, Alexandre ;
Soppera, Olivier ;
Jain, Prashant K. ;
Huang, Libai ;
Ecoffet, Carole ;
Balan, Lavinia ;
Royer, Pascal .
ACS NANO, 2010, 4 (08) :4579-4586
[6]  
Derfus AM, 2004, NANO LETT, V4, P11, DOI 10.1021/nl0347334
[7]   Reversible Tunability of the Near-Infrared Valence Band Plasmon Resonance in Cu2-xSe Nanocrystals [J].
Dorfs, Dirk ;
Haertling, Thomas ;
Miszta, Karol ;
Bigall, Nadja C. ;
Kim, Mee Rahn ;
Genovese, Alessandro ;
Falqui, Andrea ;
Povia, Mauro ;
Manna, Liberato .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (29) :11175-11180
[8]   Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer [J].
El-Sayed, IH ;
Huang, XH ;
El-Sayed, MA .
NANO LETTERS, 2005, 5 (05) :829-834
[9]   Doping semiconductor nanocrystals [J].
Erwin, SC ;
Zu, LJ ;
Haftel, MI ;
Efros, AL ;
Kennedy, TA ;
Norris, DJ .
NATURE, 2005, 436 (7047) :91-94
[10]   DJURLEITE (CU1.94S) AND LOW CHALCOCITE (CU2S) - NEW CRYSTAL-STRUCTURE STUDIES [J].
EVANS, HT .
SCIENCE, 1979, 203 (4378) :356-358