Si and SiGe Nanowires: Fabrication Process and Thermal Conductivity Measurement by 3ω-Scanning Thermal Microscopy

被引:30
作者
Grauby, Stephane [1 ]
Puyoo, Etienne [1 ,2 ,3 ]
Rampnoux, Jean-Michel [1 ]
Rouviere, Emmanuelle [2 ]
Dilhaire, Stefan [1 ]
机构
[1] Univ Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
[2] CEA, DRT LITEN DTNM, LCRE, F-38054 Grenoble, France
[3] INSA Lyon, CNRS, INL, UMR 5270, F-69621 Villeurbanne, France
关键词
SILICON NANOWIRES; THERMOELECTRIC PERFORMANCE; RESISTANCE; GROWTH;
D O I
10.1021/jp4018822
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have grown various samples of Si and SiGe nanowires (NWs), either by a classical vapor-liquid-solid (VLS) process or by chemical etching, to measure their thermal conductivity and thus evaluate their efficiency for thermoelectrics applications. To do so, we have chosen a 3 omega-Scanning Thermal Microscopy (SThM) imaging technique which is until now the only method able to perform topographical and thermal measurements simultaneously on an assembly of individual NWs, leading to a statistical value of their thermal conductivity. A size effect is clearly observed on Si NWs: 50 nm diameter NWs offer a reduced thermal conductivity in comparison with 200 nm diameter or even larger NWs. On the contrary, the thermal conductivity of SiGe NWs is widely reduced in comparison with the SiGe bulk value; even for large diameters, bigger than Si NWs ones. We discuss our results, comparing them with thermal conductivity values from the literature obtained by other measurement methods or models.
引用
收藏
页码:9025 / 9034
页数:10
相关论文
共 43 条
[1]  
[Anonymous], 2001, PHYS REV LETT, V87
[2]   An outline of the synthesis and properties of silicon nanowires [J].
Bandaru, P. R. ;
Pichanusakorn, P. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2010, 25 (02)
[3]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[4]   THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD [J].
CAHILL, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) :802-808
[5]   THERMAL-CONDUCTIVITY OF AMORPHOUS SOLIDS ABOVE THE PLATEAU [J].
CAHILL, DG ;
POHL, RO .
PHYSICAL REVIEW B, 1987, 35 (08) :4067-4073
[6]   Controlled in Situ n-Doping of Silicon Nanowires during VLS Growth and Their Characterization by Scanning Spreading Resistance Microscopy [J].
Celle, Caroline ;
Mouchet, Celine ;
Rouviere, Emmanuelle ;
Simonato, Jean-Pierre ;
Mariolle, Denis ;
Chevalier, Nicolas ;
Brioude, Arnaud .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (02) :760-765
[7]   Origin of the High Thermoelectric Performance in Si Nanowires: A First-Principle Study [J].
Chen, Xin ;
Wang, Yanchao ;
Ma, Yanming ;
Cui, Tian ;
Zou, Guangtian .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (31) :14001-14005
[8]   Heterodyne picosecond thermoreflectance applied to nanoscale thermal metrology [J].
Dilhaire, S. ;
Pernot, G. ;
Calbris, G. ;
Rampnoux, J. M. ;
Grauby, S. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (11)
[9]   Single Nanowire Thermal Conductivity Measurements by Raman Thermography [J].
Doerk, Gregory S. ;
Carraro, Carlo ;
Maboudian, Roya .
ACS NANO, 2010, 4 (08) :4908-4914
[10]   Thermal conductivity and secondary porosity of single anatase TiO2 nanowire [J].
Feng, Xuhui ;
Huang, Xiaopeng ;
Wang, Xinwei .
NANOTECHNOLOGY, 2012, 23 (18)