Tuning spin-orbit coupling in 2D materials for spintronics: a topical review

被引:87
作者
Premasiri, Kasun [1 ]
Gao, Xuan P. A. [1 ]
机构
[1] Case Western Reserve Univ, Dept Phys, 2076 Adelbert Rd, Cleveland, OH 44106 USA
关键词
2D semiconductors; spintronics; spin-orbit coupling; transport; nanoelectronics; MASSLESS DIRAC FERMIONS; WEAK-LOCALIZATION; TOPOLOGICAL INSULATOR; ELECTRICAL DETECTION; PHASE-TRANSITION; GATE CONTROL; GRAPHENE; TRANSPORT; CONDUCTION; RELAXATION;
D O I
10.1088/1361-648X/ab04c7
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Atomically-thin 2D materials have opened up new opportunities in the past decade in realizing novel electronic device concepts, owing to their unusual electronic properties. The recent progress made in the aspect of utilizing additional degrees of freedom of the electrons such as spin and valley suggests that 2D materials have a significant potential in replacing current electronic-charge-based semiconductor technology with spintronics and valleytronics. For spintronics, spin-orbit coupling plays a key role in manipulating the electrons' spin degree of freedom to encode and process information, and there are a host of recent studies exploring this facet of 2D materials. We review the recent advances in tuning spin-orbit coupling of 2D materials which are of notable importance to the progression of spintronics.
引用
收藏
页数:15
相关论文
共 174 条
[1]   Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2 [J].
Alidoust, Nasser ;
Bian, Guang ;
Xu, Su-Yang ;
Sankar, Raman ;
Neupane, Madhab ;
Liu, Chang ;
Belopolski, Ilya ;
Qu, Dong-Xia ;
Denlinger, Jonathan D. ;
Chou, Fang-Cheng ;
Hasan, M. Zahid .
NATURE COMMUNICATIONS, 2014, 5
[2]   Strongly anisotropic spin relaxation in graphene-transition metal dichalcogenide heterostructures at room temperature [J].
Antonio Benitez, L. ;
Sierra, Juan F. ;
Savero Torres, Williams ;
Arrighi, Alois ;
Bonell, Frederic ;
Costache, Marius V. ;
Valenzuela, Sergio O. .
NATURE PHYSICS, 2018, 14 (03) :303-+
[3]   Weyl and Dirac semimetals in three-dimensional solids [J].
Armitage, N. P. ;
Mele, E. J. ;
Vishwanath, Ashvin .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[4]   Spin-orbit proximity effect in graphene [J].
Avsar, A. ;
Tan, J. Y. ;
Taychatanapat, T. ;
Balakrishnan, J. ;
Koon, G. K. W. ;
Yeo, Y. ;
Lahiri, J. ;
Carvalho, A. ;
Rodin, A. S. ;
O'Farrell, E. C. T. ;
Eda, G. ;
Castro Neto, A. H. ;
Oezyilmaz, B. .
NATURE COMMUNICATIONS, 2014, 5
[5]   Spintronics [J].
Bader, S. D. ;
Parkin, S. S. P. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 1, 2010, 1 :71-88
[6]   Giant spin Hall effect in graphene grown by chemical vapour deposition [J].
Balakrishnan, Jayakumar ;
Koon, Gavin Kok Wai ;
Avsar, Ahmet ;
Ho, Yuda ;
Lee, Jong Hak ;
Jaiswal, Manu ;
Baeck, Seung-Jae ;
Ahn, Jong-Hyun ;
Ferreira, Aires ;
Cazalilla, Miguel A. ;
Neto, Antonio H. Castro ;
Oezyilmaz, Barbaros .
NATURE COMMUNICATIONS, 2014, 5
[7]   Colossal enhancement of spin-orbit coupling in weakly hydrogenated graphene [J].
Balakrishnan, Jayakumar ;
Koon, Gavin Kok Wai ;
Jaiswal, Manu ;
Castro Neto, A. H. ;
Oezyilmaz, Barbaros .
NATURE PHYSICS, 2013, 9 (05) :284-287
[8]  
Bandurin DA, 2017, NAT NANOTECHNOL, V12, P223, DOI [10.1038/nnano.2016.242, 10.1038/NNANO.2016.242]
[9]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[10]   Quantum spin hall effect [J].
Bernevig, BA ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)