A hybrid approach for taxonomy learning from text

被引:0
作者
El Sayed, Alimad [1 ]
Hacid, Hakim [2 ]
机构
[1] Univ Lyon 2, ERIC Lab, F-69676 Bron, France
[2] Univ New S Wales, Sydney, NSW 2052, Australia
来源
COMPSTAT 2008: PROCEEDINGS IN COMPUTATIONAL STATISTICS | 2008年
关键词
taxonomy learning; knowledge acquisition; relevance feedback;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
Ontology learning from text is considered as an appealing and challeging alternative to address the shortcomings of the hand-crafted ontologies. In this paper, we present OLea, a new framework for ontology learning from text. The proposal is a hybrid approach combining the pattern-based and the distributional approaches. It addresses key issues in the area of ontology learning: context-dependency, low recall of the pattern-based approach, low precision of the distributionnal approach, and finally ontology evolution. Experiments performed at each stage of the learning process show the advantages and drawbacks of the proposal.
引用
收藏
页码:255 / +
页数:2
相关论文
共 16 条
  • [1] AGIRRE E, 2000, P ONT LEARN WORKSH E
  • [2] [Anonymous], 1997, P ASIL ANN M
  • [3] Learning concept hierarchies from text corpora using formal concept analysis
    Cimiano, P
    Hotho, A
    Staab, S
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2005, 24 (24) : 305 - 339
  • [4] El Sayed Ahmad, 2007, Proceedings of the 2007 International Conference on Information & Knowledge Engineering. IKE 2007, P47
  • [5] El Sayed A, 2007, LECT NOTES COMPUT SC, V4653, P54
  • [6] Etzioni O, 2004, P 13 INT C WORLD WID, P100, DOI DOI 10.1145/988672.988687
  • [7] FAURE D, 2000, ECAI 2000, P20
  • [8] Automatic Labeling of semantic roles
    Gildea, D
    Jurafskyy, D
    [J]. COMPUTATIONAL LINGUISTICS, 2002, 28 (03) : 245 - 288
  • [9] Grefenstette Gregory, 1994, EXPLORATIONS AUTOMAT
  • [10] HEARST MA, 1992, AUTOMATIC ACQUISITIO, P8