Multiple imputation in quantile regression

被引:71
作者
Wei, Ying [1 ]
Ma, Yanyuan [2 ]
Carroll, Raymond J. [2 ]
机构
[1] Columbia Univ, Dept Biostat, New York, NY 10032 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Missing data; Multiple imputation; Quantile regression; Regression quantile; Shrinkage estimation; LONGITUDINAL DATA; ESTIMATORS; MODELS;
D O I
10.1093/biomet/ass007
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a multiple imputation estimator for parameter estimation in a quantile regression model when some covariates are missing at random. The estimation procedure fully utilizes the entire dataset to achieve increased efficiency, and the resulting coefficient estimators are root-n consistent and asymptotically normal. To protect against possible model misspecification, we further propose a shrinkage estimator, which automatically adjusts for possible bias. The finite sample performance of our estimator is investigated in a simulation study. Finally, we apply our methodology to part of the Eating at American's Table Study data, investigating the association between two measures of dietary intake.
引用
收藏
页码:423 / 438
页数:16
相关论文
共 17 条
[1]  
Amemiya Takeshi, 1985, Advanced Econometrics
[2]  
Carroll R. J., 2006, MEASUREMENT ERROR NO
[3]   Shrinkage Estimators for Robust and Efficient Inference in Haplotype-Based Case-Control Studies [J].
Chen, Yi-Hau ;
Chatterjee, Nilanjan ;
Carroll, Raymond J. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (485) :220-233
[4]  
HALL P, 1988, J ROY STAT SOC B MET, V50, P381
[5]   A general bahadur representation of M-estimators and its application to linear regression with nonstochastic designs [J].
He, XM ;
Shao, QM .
ANNALS OF STATISTICS, 1996, 24 (06) :2608-2630
[6]   Unit root quantile autoregression inference [J].
Koenker, R ;
Xiao, Z .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) :775-787
[7]   REGRESSION QUANTILES [J].
KOENKER, R ;
BASSETT, G .
ECONOMETRICA, 1978, 46 (01) :33-50
[8]  
Koenker R., 2005, Econometric Society Monographs, DOI [10.1017/CBO9780511754098, DOI 10.1017/CBO9780511754098]
[9]   Quantile regression methods for longitudinal data with drop-outs: Application to CD4 cell counts of patients infected with the human immunodeficiency virus [J].
Lipsitz, SR ;
Fitzmaurice, GM ;
Molenberghs, G ;
Zhao, LP .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1997, 46 (04) :463-476
[10]  
Little R. J. A., 1987, STAT ANAL MISSING DA