Halide-based solid-state electrolyte as an interfacial modifier for high performance solid-state Li-O2 batteries

被引:53
作者
Zhao, Changtai [1 ]
Liang, Jianwen [1 ]
Li, Xiaona [1 ]
Holmes, Nathaniel [1 ]
Wang, Changhong [1 ]
Wang, Jian [2 ]
Zhao, Feipeng [1 ]
Li, Shaofeng [5 ]
Sun, Qian [1 ]
Yang, Xiaofei [1 ]
Liang, Jianneng [1 ]
Lin, Xiaoting [1 ]
Li, Weihan [1 ]
Li, Ruying [1 ]
Zhao, Shangqian [3 ]
Huang, Huan [4 ]
Zhang, Li [3 ]
Lu, Shigang [3 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
[2] Univ Saskatchewan, Canadian Light Source Inc, 44 Innovat Blvd, Saskatoon, SK S7N 2V3, Canada
[3] China Automot Battery Res Inst Co Ltd, Beijing 100088, Peoples R China
[4] Glabat Solid State Battery Inc, 700 Collip Circle, London, ON N6G 4X8, Canada
[5] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院; 加拿大创新基金会;
关键词
Li-O-2; batteries; Halide electrolyte; Interface; Solid-state electrolytes; Air electrode; LITHIUM METAL ANODE; CYCLE LIFE; AIR;
D O I
10.1016/j.nanoen.2020.105036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state electrolyte and solid-state air electrode design are the main bottlenecks inhibiting the development of solid-state Li-O-2 batteries (SSLOBs). Herein, we report an ionically superconductive halide electrolyte which regulates the air electrode interface and enhances the performance of SSLOBs. As this is the first investigation of this halide electrolyte in a Li-O-2 battery, a comprehensive study of the stability of this electrolyte is conducted. The high ionic conductivity of Li3InCl6 (up to 1.3 x 10(-3) S cm(-1)) and its solution-based preparation method enable it to work like a liquid electrolyte modifier at the air electrode, uniformly regulating the function of the interface. As a result, Li-O-2 batteries with Li3InCl6 exhibit decreased interfacial resistance and enhanced decomposition of discharge products. The present study may open a new window of opportunity toward the development of SSLOBs.
引用
收藏
页数:6
相关论文
共 43 条
[1]  
[Anonymous], 2018, ENERGY STORAGE MATER, DOI DOI 10.1016/J.ENSM.2017.10.002
[2]  
[Anonymous], 2018, J POWER SOURCES, DOI DOI 10.1016/J.JPOWSOUR.2018.05.080
[3]  
[Anonymous], 2017, NANO ENERGY, DOI DOI 10.1016/J.NANOEN.2017.02.030
[4]  
[Anonymous], 2019, SMALL METHODS, DOI DOI 10.1002/SMTD.201800437
[5]   Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries [J].
Asano, Tetsuya ;
Sakai, Akihiro ;
Ouchi, Satoru ;
Sakaida, Masashi ;
Miyazaki, Akinobu ;
Hasegawa, Shinya .
ADVANCED MATERIALS, 2018, 30 (44)
[6]   Liquid-Free Lithium-Oxygen Batteries [J].
Balaish, Moran ;
Peled, Emanuel ;
Golodnitsky, Diana ;
Ein-Eli, Yair .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (02) :436-440
[7]   A structured three-dimensional polymer electrolyte with enlarged active reaction zone for Li-O2 batteries [J].
Bonnet-Mercier, Nadege ;
Wong, Raymond A. ;
Thomas, Morgan L. ;
Dutta, Arghya ;
Yamanaka, Keisuke ;
Yogi, Chihiro ;
Ohta, Toshiaki ;
Byon, Hye Ryung .
SCIENTIFIC REPORTS, 2014, 4
[8]   Reactivity of Electrolytes for Lithium-Oxygen Batteries with Li2O2 [J].
Chalasani, Dinesh ;
Lucht, Brett L. .
ECS ELECTROCHEMISTRY LETTERS, 2012, 1 (02) :A38-A42
[9]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[10]   Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries [J].
Gallant, Betar M. ;
Kwabi, David G. ;
Mitchell, Robert R. ;
Zhou, Jigang ;
Thompson, Carl V. ;
Shao-Horn, Yang .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) :2518-2528