SMALL ELLIPTIC QUANTUM GROUP eτ,γ(slN)

被引:7
|
作者
Tarasov, V. [1 ]
Varchenko, A. [2 ]
机构
[1] VA Steklov Math Inst, St Petersburg Branch, St Petersburg 191011, Russia
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
关键词
Dynamical Yang-Baxter equation; elliptic quantum group;
D O I
10.17323/1609-4514-2001-1-2-243-286
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The small elliptic quantum group e(tau,gamma)(sl(N)), introduced in the paper, is an elliptic dynamical analogue of the universal enveloping algebra U(sl(N)). We define highest weight modules, Verma modules, and contragradient modules over e(tau,gamma)(sl(N)), the dynamical Shapovalov form for e(tau,gamma)(sl(N)), and the contravariant form for highest weight e(tau,gamma)(sl(N))-modules. We show that any finite-dimensional sl(N)-module and any Verma module over sl(N) can be lifted to the corresponding e(tau,gamma)(sl(N))-module on the same vector space. For the elliptic quantum group E-tau,E-gamma(sl(N)) we construct the evaluation morphism E-tau,E-gamma(sl(N)) -> e(tau,gamma)(sl(N)), thus making any e(tau,gamma)(sl(N))-module into an evaluation Ee(tau,gamma)(sl(N))-module.
引用
收藏
页码:243 / 286
页数:44
相关论文
共 50 条