Local well-posedness for the derivative nonlinear Schrodinger Equation in Besov Spaces

被引:0
|
作者
Cloos, Cai Constantin [1 ]
机构
[1] Univ Bielefeld, Fak Math, Postfach 100131, D-33501 Bielefeld, Germany
关键词
local well-posedness; derivative nonlinear Schrodinger equation; Besov space; multilinear estimates;
D O I
10.14492/hokmj/1550480650
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the cubic derivative nonlinear Schrodinger equation is locally well-posed in Besov spaces B-2,infinity(s) (X), s >= 1/2, where we treat the non-periodic setting X = R and the periodic setting X = T simultaneously. The proof is based on the strategy of Herr for initial data in H-s (T), s >= 1/2.
引用
收藏
页码:207 / 244
页数:38
相关论文
共 50 条
  • [1] Local well-posedness for the nonlocal derivative nonlinear Schrodinger equation in Besov spaces
    Barros, Vanessa
    de Moura, Roger
    Santos, Gleison
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 320 - 338
  • [2] Besov spaces and unconditional well-posedness for the nonlinear Schrodinger equation in Hs (Rn)
    Furioli, G
    Terraneo, E
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (03) : 349 - 367
  • [3] Optimal Local Well-Posedness for the Periodic Derivative Nonlinear Schrodinger Equation
    Deng, Yu
    Nahmod, Andrea R.
    Yue, Haitian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (02) : 1061 - 1107
  • [4] GLOBAL WELL-POSEDNESS ON THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Wu, Yifei
    ANALYSIS & PDE, 2015, 8 (05): : 1101 - 1112
  • [5] ON THE WELL-POSEDNESS PROBLEM FOR THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Killip, Rowan
    Ntekoume, Maria
    Visan, Monica
    ANALYSIS & PDE, 2023, 16 (05): : 1245 - 1270
  • [6] Well-posedness for a generalized derivative nonlinear Schrodinger equation
    Hayashi, Masayuki
    Ozawa, Tohru
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (10) : 5424 - 5445
  • [7] Global well-posedness for the derivative nonlinear Schrodinger equation
    Bahouri, Hajer
    Perelman, Galina
    INVENTIONES MATHEMATICAE, 2022, 229 (02) : 639 - 688
  • [8] Local well-posedness for the inhomogeneous biharmonic nonlinear Schrodinger equation in Sobolev spaces
    An, JinMyong
    Kim, JinMyong
    Ryu, PyongJo
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2022, 41 (01): : 239 - 258
  • [9] LOCAL WELL-POSEDNESS FOR THE INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATION
    Aloui, Lassaad
    Tayachi, Slim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (11) : 5409 - 5437
  • [10] THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION: GLOBAL WELL-POSEDNESS AND SOLITON RESOLUTION
    Jenkins, Robert
    Liu, Jiaqi
    Perry, Peter
    Sulem, Catherine
    QUARTERLY OF APPLIED MATHEMATICS, 2020, 78 (01) : 33 - 73