In the last years, microarray technology has become widely used in relevant biomedical areas such as drug target identification, pharmacogenomics or clinical research. However, the necessary prerequisites for the development of valuable translational microarray-based diagnostic tools are (i) a solid understanding of the relative strengths and weaknesses of underlying classification methods and (ii) a biologically plausible and understandable behaviour of such models from a biological point of view. In this paper we propose a novel classifier able to combine the advantages of ensemble approaches with the benefits obtained from the true integration of biological knowledge in the classification process of different microarray samples. The aim of the current work is to guarantee the robustness of the proposed classification model when applied to several microarray data in an inter-dataset scenario. The comparative experimental results demonstrated that our proposal working with biological knowledge outperforms other well-known simple classifiers and ensemble alternatives in binary and multiclass cancer prediction problems using publicly available data. (C) 2012 Elsevier Ltd. All rights reserved.
机构:
Univ Rennes 1, CNRS, UMR 6061, IFR 140,Fac Med, F-35043 Rennes, France
CHU Rennes, Dept Biochem & Mol Genet, Med Genom Unit, Rennes, FranceAgrocampus Rennes, UMR 6625, Lab Math Appl, CNRS, Rennes, France
de Tayrac, Marie
Le, Sebastien
论文数: 0引用数: 0
h-index: 0
机构:
Agrocampus Rennes, UMR 6625, Lab Math Appl, CNRS, Rennes, FranceAgrocampus Rennes, UMR 6625, Lab Math Appl, CNRS, Rennes, France
Le, Sebastien
Aubry, Marc
论文数: 0引用数: 0
h-index: 0
机构:
Ouest Genopole, IFR 140, Transcript Platform, Rennes, FranceAgrocampus Rennes, UMR 6625, Lab Math Appl, CNRS, Rennes, France
Aubry, Marc
Mosser, Jean
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rennes 1, CNRS, UMR 6061, IFR 140,Fac Med, F-35043 Rennes, France
CHU Rennes, Dept Biochem & Mol Genet, Med Genom Unit, Rennes, France
Ouest Genopole, IFR 140, Transcript Platform, Rennes, FranceAgrocampus Rennes, UMR 6625, Lab Math Appl, CNRS, Rennes, France
Mosser, Jean
Husson, Francois
论文数: 0引用数: 0
h-index: 0
机构:
Agrocampus Rennes, UMR 6625, Lab Math Appl, CNRS, Rennes, FranceAgrocampus Rennes, UMR 6625, Lab Math Appl, CNRS, Rennes, France