Polygon decomposition for efficient construction of Minkowski sums

被引:67
|
作者
Agarwal, PK
Flato, E [1 ]
Halperin, D
机构
[1] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[2] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2002年 / 21卷 / 1-2期
基金
美国国家科学基金会; 以色列科学基金会;
关键词
polygon decomposition; Minkowski sum; convex decomposition; experimental results;
D O I
10.1016/S0925-7721(01)00041-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Several algorithms for computing the Minkowski sum of two polygons in the plane begin by decomposing each polygon into convex subpolygons. We examine different methods for decomposing polygons by their suitability for efficient construction of Minkowski sums. We study and experiment with various well-known decompositions as well as with several new decomposition schemes. We report on our experiments with various decompositions and different input polygons. Among our findings are that in general: (i) triangulations are too costly, (ii) what constitutes a good decomposition for one of the input polygons depends on the other input polygon - consequently, we develop a procedure for simultaneously decomposing the two polygons such that a "mixed" objective function is minimized, (iii) there are optimal decomposition algorithms that significantly expedite the Minkowski-sum computation, but the decomposition itself is expensive to compute - in such cases simple heuristics that approximate the optimal decomposition perform very well. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:39 / 61
页数:23
相关论文
共 50 条
  • [21] On Minkowski Sums of Many Small Sets
    Roginskaya, M. M.
    Shulman, V. S.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2018, 52 (03) : 232 - 235
  • [22] Minkowski Sums of Rotating Convex Polyhedra
    Lien, Jyh-Ming
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SGG'08), 2008, : 228 - 229
  • [23] Approximate unions of lines and Minkowski sums
    van Kreveld, M
    van der Stappen, AF
    ALGORITHMICA, 2006, 45 (01) : 91 - 107
  • [24] Blob metamorphosis based on minkowski sums
    Galin, E
    Akkouche, S
    COMPUTER GRAPHICS FORUM, 1996, 15 (03) : C143 - +
  • [25] Toric surface codes and Minkowski sums
    Little, John
    Schenck, Hal
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2006, 20 (04) : 999 - 1014
  • [26] Minkowski's inequality and sums of squares
    Frenkel, Peter E.
    Horvath, Peter
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (03): : 510 - 516
  • [27] Exact Minkowski Sums of Polygons With Holes
    Baram, Alon
    Fogel, Efi
    Halperin, Dan
    Hemmer, Michael
    Morr, Sebastian
    ALGORITHMS - ESA 2015, 2015, 9294 : 71 - 82
  • [28] Approximate unions of lines and minkowski sums
    Marc van Kreveld
    A. Frank van der Stappen
    Algorithmica, 2006, 45 : 91 - 107
  • [29] Approximate unions of lines and Minkowski sums
    van Kreveld, M
    van der Stappen, AF
    ALGORITHMS ESA 2004, PROCEEDINGS, 2004, 3221 : 448 - 459
  • [30] Exact Minkowski sums of polygons with holes
    Baram, Alon
    Fogel, Efi
    Halperin, Dan
    Hemmer, Michael
    Morr, Sebastian
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 73 : 46 - 56