Effective delivery of an angiogenesis inhibitor by neovessel-targeted liposomes

被引:31
作者
Katanasaka, Y. [1 ,3 ]
Ida, T. [1 ,3 ]
Asai, T. [1 ,3 ]
Maeda, N. [2 ]
Oku, N. [1 ,3 ]
机构
[1] Univ Shizuoka, Dept Med Biochem, Sch Pharmaceut Sci, Suruga Ku, Shizuoka 4228526, Japan
[2] Nippon Fine Chem Co Ltd, Takasago, Hyogo 6760074, Japan
[3] Univ Shizuoka, Global COE, Suruga Ku, Shizuoka 4228526, Japan
关键词
angiogenesis; drug delivery systems; angiogenesis inhibitor; APRPG-modified liposomes; SU1498;
D O I
10.1016/j.ijpharm.2008.04.046
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Angiogenesis is critical for tumor growth and metastasis, and several angiogenesis inhibitors have been developed for the treatment of cancer. Previously, we identified angiogenic vessel-homing peptide, Ala-Pro-Arg-Pro-Gly (APRPG), by use of a phage-displayed peptide library. APRPG peptide-modified liposomes have been revealed to be useful for the delivery of encapsulated drugs to angiogenic vasculature in tumor-bearing animals. In the present study, to assess the usefulness of APRPG-PEG-modified liposomes as a carrier of angiogenesis inhibitors in vitro and in vivo, we designed and validated APRPG-PEG-modified liposomal angiogenesis inhibitor. SU1498, an inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinase, was successfully encapsulated into the liposomes. APRPG-PEG-modified liposomal SU1498 inhibited VEGF-stimulated endothelial cell proliferation in vitro. Moreover, APRPG-PEG-modified liposomal SU1498 significantly decreased tumor microvessel density in Colon26 NL-17 cell-bearing mice and prolonged the survival time of the mice. These findings suggest that APRPG-PEG-modified liposomes effectively deliver SU1498 to angiogenic endothelial cells in tumors and thus inhibit tumor-induced angiogenesis. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 29 条
[11]   Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer [J].
Hurwitz, H ;
Fehrenbacher, L ;
Novotny, W ;
Cartwright, T ;
Hainsworth, J ;
Heim, W ;
Berlin, J ;
Baron, A ;
Griffing, S ;
Holmgren, E ;
Ferrara, N ;
Fyfe, G ;
Rogers, B ;
Ross, R ;
Kabbinavar, F .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 350 (23) :2335-2342
[12]   Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase [J].
Kondo, M ;
Asai, T ;
Katanasaka, Y ;
Sadzuka, Y ;
Tsukada, H ;
Ogino, K ;
Taki, T ;
Baba, K ;
Oku, N .
INTERNATIONAL JOURNAL OF CANCER, 2004, 108 (02) :301-306
[13]  
Koyanagi S, 2003, CANCER RES, V63, P7277
[14]  
Laird AD, 2000, CANCER RES, V60, P4152
[15]   Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review [J].
Maeda, H ;
Wu, J ;
Sawa, T ;
Matsumura, Y ;
Hori, K .
JOURNAL OF CONTROLLED RELEASE, 2000, 65 (1-2) :271-284
[16]   Anti-neovascular therapy by use of tumor neovasculature-targeted long-circulating liposome [J].
Maeda, N ;
Takeuchi, Y ;
Takada, M ;
Sadzuka, Y ;
Namba, Y ;
Oku, N .
JOURNAL OF CONTROLLED RELEASE, 2004, 100 (01) :41-52
[17]   Enhancement of anticancer activity in antineovascular therapy is based on the intratumoral distribution of the active targeting carrier for anticancer drugs [J].
Maeda, Noriyuki ;
Miyazawa, Souichiro ;
Shimizu, Kosuke ;
Asai, Tomohiro ;
Yonezawa, Sei ;
Kitazawa, Sadaya ;
Namba, Yukihiro ;
Tsukada, Hideo ;
Oku, Naoto .
BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2006, 29 (09) :1936-1940
[18]   Targeted and sustained drug delivery using PEGylated galactosylated liposomes [J].
Managit, C ;
Kawakami, S ;
Nishikawa, M ;
Yamashita, F ;
Hashida, M .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2003, 266 (1-2) :77-84
[19]  
Mendel DB, 2003, CLIN CANCER RES, V9, P327
[20]   Anti-neovascular therapy using novel peptides homing to angiogenic vessels [J].
Oku, N ;
Asai, T ;
Watanabe, K ;
Kuromi, K ;
Nagatsuka, M ;
Kurohane, K ;
Kikkawa, H ;
Ogino, K ;
Tanaka, M ;
Ishikawa, D ;
Tsukada, H ;
Momose, M ;
Nakayama, J ;
Taki, T .
ONCOGENE, 2002, 21 (17) :2662-2669