Modeling of salt and pH gradient elution in ion-exchange chromatography

被引:58
作者
Schmidt, Michael [1 ]
Hafner, Mathias [2 ]
Frech, Christian [1 ]
机构
[1] Univ Appl Sci Mannheim, Inst Biochem, D-68163 Mannheim, Germany
[2] Univ Appl Sci Mannheim, Inst Mol Biol & Cell Culture Technol, D-68163 Mannheim, Germany
关键词
Gradient chromatofocusing; Ion-exchange chromatography; pH gradient elution; Stoichiometric displacement model; PERFORMANCE LIQUID-CHROMATOGRAPHY; PROTEIN ADSORPTION; OPERATING-CONDITIONS; PK(A) VALUES; PREDICTION; SEPARATION; RETENTION; CURVES; THERMODYNAMICS; SELECTION;
D O I
10.1002/jssc.201301007
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The separation of proteins by internally and externally generated pH gradients in chromatofocusing on ion-exchange columns is a well-established analytical method with a large number of applications. In this work, a stoichiometric displacement model was used to describe the retention behavior of lysozyme on SP Sepharose FF and a monoclonal antibody on Fractogel SO3 (S) in linear salt and pH gradient elution. The pH dependence of the binding charge B in the linear gradient elution model is introduced using a protein net charge model, while the pH dependence of the equilibrium constant is based on a thermodynamic approach. The model parameter and pH dependences are calculated from linear salt gradient elutions at different pH values as well as from linear pH gradient elutions at different fixed salt concentrations. The application of the model for the well-characterized protein lysozyme resulted in almost identical model parameters based on either linear salt or pH gradient elution data. For the antibody, only the approach based on linear pH gradients is feasible because of the limited pH range useful for salt gradient elution. The application of the model for the separation of an acid variant of the antibody from the major monomeric form is discussed.
引用
收藏
页码:5 / 13
页数:9
相关论文
共 47 条
[1]   Selection of pH-related parameters in ion-exchange chromatography using pH-gradient operations [J].
Ahamed, Tangir ;
Chilamkurthi, Sreekanth ;
Nfor, Beckley K. ;
Verhaert, Peter D. E. M. ;
van Dedem, Gijs W. K. ;
van der Wielen, Luuk A. M. ;
Eppink, Michel H. M. ;
van de Sandt, Emile J. A. X. ;
Ottens, Marcel .
JOURNAL OF CHROMATOGRAPHY A, 2008, 1194 (01) :22-29
[2]   Influence of structural details in modeling electrostatically driven protein adsorption [J].
Asthagiri, D ;
Lenhoff, AM .
LANGMUIR, 1997, 13 (25) :6761-6768
[3]   SEPARATION OF NEUTRAL PROTEINS ON ION-EXCHANGE RESINS [J].
BOARDMAN, NK ;
PARTRIDGE, SM .
BIOCHEMICAL JOURNAL, 1955, 59 (04) :543-552
[4]   pH dependence of ion-exchange equilibrium of proteins [J].
Bosma, JC ;
Wesselingh, JA .
AICHE JOURNAL, 1998, 44 (11) :2399-2409
[5]   STERIC MASS-ACTION ION-EXCHANGE - DISPLACEMENT PROFILES AND INDUCED SALT GRADIENTS [J].
BROOKS, CA ;
CRAMER, SM .
AICHE JOURNAL, 1992, 38 (12) :1969-1978
[6]   Influence of surface modification on protein retention in ion-exchange chromatography Evaluation using different retention models [J].
Bruch, Thomas ;
Graalfs, Heiner ;
Jacob, Lothar ;
Frech, Christian .
JOURNAL OF CHROMATOGRAPHY A, 2009, 1216 (06) :919-926
[7]   Utilization of Lysozyme Charge Ladders to Examine the Effects of Protein Surface Charge Distribution on Binding Affinity in Ion Exchange Systems [J].
Chung, Wai Keen ;
Evans, Steven T. ;
Freed, Alexander S. ;
Keba, James J. ;
Baer, Zachary C. ;
Rege, Kaushal ;
Cramer, Steven M. .
LANGMUIR, 2010, 26 (02) :759-768
[8]  
Creighton T.E., 2002, PROTEINS STRUCTURES, V2nd
[9]  
Davies C., 1962, ION ASS
[10]   3D structure-based protein retention prediction for ion-exchange chromatography [J].
Dismer, Florian ;
Hubbuch, Juergen .
JOURNAL OF CHROMATOGRAPHY A, 2010, 1217 (08) :1343-1353