PLANARITY OF PERMUTABILITY GRAPHS OF SUBGROUPS OF GROUPS

被引:11
作者
Rajkumar, R. [1 ]
Devi, P. [1 ]
机构
[1] Deemed Univ, Gandhigram Rural Inst, Dept Math, Gandhigram 624302, Tamil Nadu, India
关键词
Permutability graph; finite groups; infinite groups; subgroups; planar; outer planar; unicyclic; claw-free; FINITE-GROUPS;
D O I
10.1142/S0219498813501120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a group. The permutability graph of subgroups of G, denoted by G(G), is a graph with all the proper subgroups of G as its vertices and two distinct vertices in G(G) are adjacent if and only if the corresponding subgroups permute in G. In this paper, we classify the finite groups whose permutability graphs of subgroups are planar. In addition, we classify the finite groups whose permutability graphs of subgroups are one of outerplanar, path, cycle, unicyclic, claw-free or C-4-free. Also, we investigate the planarity of permutability graphs of subgroups of infinite groups.
引用
收藏
页数:15
相关论文
共 23 条
[1]   Non-commuting graph of a group [J].
Abdollahi, A ;
Akbari, S ;
Maimani, HR .
JOURNAL OF ALGEBRA, 2006, 298 (02) :468-492
[2]  
[Anonymous], 1955, THEORY GROUPS FINITE
[3]  
[Anonymous], 1968, Finite Groups
[4]   On a graph related to permutability in finite groups [J].
Ballester-Bolinches, A. ;
Cossey, John ;
Esteban-Romero, R. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (04) :567-570
[5]  
Bertholf D., 1978, CZECH MATH J, V28, P365
[6]   ON A GRAPH RELATED TO CONJUGACY CLASSES OF GROUPS [J].
BERTRAM, EA ;
HERZOG, M ;
MANN, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 :569-575
[7]   Finite groups and subgroup-permutability [J].
Bianchi, M ;
Mauri, AGB ;
Verardi, L .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1995, 169 :251-268
[8]   Subgroup-permutability and affine planes [J].
Bianchi, M ;
Gillio, A ;
Verardi, L .
GEOMETRIAE DEDICATA, 2001, 85 (1-3) :147-155
[9]  
Bohanon J. P., 2004, THESIS SW MISSOURI S
[10]   Finite groups with planar subgroup lattices [J].
Bohanon, Joseph P. ;
Reid, Les .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 23 (03) :207-223