Transcriptional markers of sub-optimal nutrition in developing Apis mellifera nurse workers

被引:36
作者
Corby-Harris, Vanessa [1 ,2 ]
Jones, Beryl M. [1 ]
Walton, Alexander [1 ]
Schwan, Melissa R. [1 ]
Anderson, Kirk E. [1 ,2 ]
机构
[1] USDA ARS, Carl Hayden Bee Res Ctr, Tucson, AZ 85719 USA
[2] Univ Arizona, Dept Entomol, Tucson, AZ 85721 USA
来源
BMC GENOMICS | 2014年 / 15卷
关键词
Transcriptome; Apis mellifera; Nutrition; Starvation; Nurse; Development; Physiology; DIFFERENTIAL EXPRESSION ANALYSIS; BEE COLONY LOSSES; DIVISION-OF-LABOR; HONEY-BEE; GENE-EXPRESSION; ENRICHMENT ANALYSIS; JUVENILE-HORMONE; IDENTIFICATION; GENECODIS; BALANCE;
D O I
10.1186/1471-2164-15-134
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Honey bees (Apis mellifera) contribute substantially to the worldwide economy and ecosystem health as pollinators. Pollen is essential to the bee's diet, providing protein, lipids, and micronutrients. The dramatic shifts in physiology, anatomy, and behavior that accompany normal worker development are highly plastic and recent work demonstrates that development, particularly the transition from nurse to foraging roles, is greatly impacted by diet. However, the role that diet plays in the developmental transition of newly eclosed bees to nurse workers is poorly understood. To further understand honey bee nutrition and the role of diet in nurse development, we used a high-throughput screen of the transcriptome of 3 day and 8 day old worker bees fed either honey and stored pollen (rich diet) or honey alone (poor diet) within the hive. We employed a three factor (age, diet, age x diet) analysis of the transcriptome to determine whether diet affected nurse worker physiology and whether poor diet altered the developmental processes normally associated with aging. Results: Substantial changes in gene expression occurred due to starvation. Diet-induced changes in gene transcription occurring in younger bees were largely a subset of those occurring in older bees, but certain signatures of starvation were only evident 8 day old workers. Of the 18,542 annotated transcripts in the A. mellifera genome, 150 transcripts exhibited differential expression due to poor diet at 3d of age compared with 17,226 transcripts that differed due to poor diet at 8d of age, and poor diet caused more frequent down-regulation of gene expression in younger bees compared to older bees. In addition, the age-related physiological changes that accompanied early adult development differed due to the diet these young adult bees were fed. More frequent down-regulation of gene expression was observed in developing bees fed a poor diet compared to those fed an adequate diet. Functional analyses also suggest that the physiological and developmental processes occurring in well-fed bees are vastly different than those occurring in pollen deprived bees. Our data support the hypothesis that poor diet causes normal age-related development to go awry. Conclusion: Poor nutrition has major consequences for the expression of genes underlying the physiology and age-related development of nurse worker bees. More work is certainly needed to fully understand the consequences of starvation and the complex biology of nutrition and development in this system, but the genes identified in the present study provide a starting point for understanding the consequences of poor diet and for mitigating the economic costs of colony starvation.
引用
收藏
页数:16
相关论文
共 55 条
  • [1] Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees
    Alaux, Cedric
    Dantec, Christelle
    Parrinello, Hughes
    Le Conte, Yves
    [J]. BMC GENOMICS, 2011, 12
  • [2] Mechanisms of stable lipid loss in a social insect
    Ament, Seth A.
    Chan, Queenie W.
    Wheeler, Marsha M.
    Nixon, Scott E.
    Johnson, S. Peir
    Rodriguez-Zas, Sandra L.
    Foster, Leonard J.
    Robinson, Gene E.
    [J]. JOURNAL OF EXPERIMENTAL BIOLOGY, 2011, 214 (22) : 3808 - 3821
  • [3] An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera)
    Anderson, K. E.
    Sheehan, T. H.
    Eckholm, B. J.
    Mott, B. M.
    DeGrandi-Hoffman, G.
    [J]. INSECTES SOCIAUX, 2011, 58 (04) : 431 - 444
  • [4] [Anonymous], ANN ENTOMOLOGICAL SO
  • [5] [Anonymous], 2002, NCBI HDB
  • [6] Barchuk Angel Roberto, 2002, Journal of Insect Science (Tucson), V2, P1
  • [7] GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists
    Carmona-Saez, Pedro
    Chagoyen, Monica
    Tirado, Francisco
    Carazo, Jose M.
    Pascual-Montano, Alberto
    [J]. GENOME BIOLOGY, 2007, 8 (01)
  • [8] Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation
    Chambers, Stuart M.
    Shaw, Chad A.
    Gatza, Catherine
    Fisk, C. Joseph
    Donehower, Lawrence A.
    Goodell, Margaret A.
    [J]. PLOS BIOLOGY, 2007, 5 (08): : 1750 - 1762
  • [9] The Worker Honeybee Fat Body Proteome Is Extensively Remodeled Preceding a Major Life-History Transition
    Chan, Queenie W. T.
    Mutti, Navdeep S.
    Foster, Leonard J.
    Kocher, Sarah D.
    Amdam, Gro V.
    Wolschin, Florian
    [J]. PLOS ONE, 2011, 6 (09):
  • [10] A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee
    Claudianos, C.
    Ranson, H.
    Johnson, R. M.
    Biswas, S.
    Schuler, M. A.
    Berenbaum, M. R.
    Feyereisen, R.
    Oakeshott, J. G.
    [J]. INSECT MOLECULAR BIOLOGY, 2006, 15 (05) : 615 - 636