Evaluating the performance of nanostructured materials as lithium-ion battery electrodes

被引:168
作者
Armstrong, Mark J. [1 ,2 ]
O'Dwyer, Colm [2 ,3 ]
Macklin, William J. [5 ]
Holmes, Justin. D. [1 ,2 ,4 ]
机构
[1] Natl Univ Ireland Univ Coll Cork, Dept Chem, Mat Chem & Anal Grp, Cork, Ireland
[2] Natl Univ Ireland Univ Coll Cork, Tyndall Natl Inst, Cork, Ireland
[3] Natl Univ Ireland Univ Coll Cork, Dept Chem, Appl Nanosci Grp, Cork, Ireland
[4] Univ Dublin Trinity Coll, CRANN, Dublin 2, Ireland
[5] Nexeon Ltd, Abingdon, Oxon, England
基金
爱尔兰科学基金会;
关键词
lithium ion batteries; nanostructuring; anodes; cathodes; LIFEPO4 CATHODE MATERIALS; CARBON-COATED LI4TI5O12; ONE-POT SYNTHESIS; IMPROVED ELECTROCHEMICAL PERFORMANCE; SPINEL LIMN2O4 NANOWIRES; CAPACITY ANODE MATERIAL; GOOD RATE CAPABILITY; IN-SITU SYNTHESIS; SOL-GEL SYNTHESIS; BINDER-FREE ANODE;
D O I
10.1007/s12274-013-0375-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of the lithium-ion cell is heavily dependent on the ability of the host electrodes to accommodate and release Li+ ions from the local structure. While the choice of electrode materials may define parameters such as cell potential and capacity, the process of intercalation may be physically limited by the rate of solid-state Li+ diffusion. Increased diffusion rates in lithium-ion electrodes may be achieved through a reduction in the diffusion path, accomplished by a scaling of the respective electrode dimensions. In addition, some electrodes may undergo large volume changes associated with charging and discharging, the strain of which, may be better accommodated through nanostructuring. Failure of the host to accommodate such volume changes may lead to pulverisation of the local structure and a rapid loss of capacity. In this review article, we seek to highlight a number of significant gains in the development of nanostructured lithium-ion battery architectures (both anode and cathode), as drivers of potential next-generation electrochemical energy storage devices.
引用
收藏
页码:1 / 62
页数:62
相关论文
共 525 条
  • [1] Non-Annealed Graphene Paper as a Binder-Free Anode for Lithium-Ion Batteries
    Abouimrane, Ali
    Compton, Owen C.
    Amine, Khalil
    Nguyen, SonBinh T.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (29) : 12800 - 12804
  • [2] Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes
    Ahmad, Mashkoor
    Shi Yingying
    Nisar, Amjad
    Sun, Hongyu
    Shen, Wanci
    Wei, Miao
    Zhu, Jing
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (21) : 7723 - 7729
  • [3] Chromium doping as a new approach to improve the cycling performance at high temperature of 5 VLiNi0.5Mn1.5O4-based positive electrode
    Aklalouch, Mohamed
    Manuel Amarilla, Jose
    Rojas, Rosa M.
    Saadoune, Ismael
    Maria Rojo, Jose
    [J]. JOURNAL OF POWER SOURCES, 2008, 185 (01) : 501 - 511
  • [4] Synthesis, Structure and Electrochemistry of Lithium Vanadium Phosphate Cathode Materials
    Allen, Chris J.
    Jia, Qingying
    Chinnasamy, C. N.
    Mukerjee, Sanjeev
    Abraham, K. M.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (12) : A1250 - A1259
  • [5] Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique
    Amin, R.
    Maier, J.
    Balaya, P.
    Chen, D. P.
    Lin, C. T.
    [J]. SOLID STATE IONICS, 2008, 179 (27-32) : 1683 - 1687
  • [6] Nanostructured Anode Material for High-Power Battery System in Electric Vehicles
    Amine, Khalil
    Belharouak, Ilias
    Chen, Zonghai
    Tran, Taison
    Yumoto, Hiroyuki
    Ota, Naoki
    Myung, Seung-Taek
    Sun, Yang-Kook
    [J]. ADVANCED MATERIALS, 2010, 22 (28) : 3052 - 3057
  • [7] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [8] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [9] Structure and Lithium Transport Pathways in Li2FeSiO4 Cathodes for Lithium Batteries
    Armstrong, A. Robert
    Kuganathan, Navaratnarajah
    Islam, M. Saiful
    Bruce, Peter G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (33) : 13031 - 13035
  • [10] Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries
    Armstrong, AR
    Bruce, PG
    [J]. NATURE, 1996, 381 (6582) : 499 - 500