Master constraint operators in loop quantum gravity

被引:29
作者
Han, MX
Ma, YG [1 ]
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[2] Louisiana State Univ, Horace Hearne Jr Inst Theoret Phys, Baton Rouge, LA 70803 USA
基金
中国国家自然科学基金;
关键词
loop quantum gravity; master constraint; quantum dynamics;
D O I
10.1016/j.physletb.2006.03.004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce a master constraint operator (M) over cap densely defined in the diffeomorphism invariant Hilbert space in loop quantum gravity, which corresponds classically to the master constraint in the programme. It is shown that (M) over cap is positive and symmetric, and hence has its Friedrichs self-adjoint extension. The same conclusion is tenable for an alternative master operator (M) over cap', whose quadratic form coincides with the one proposed by Thiemann. So the master constraint programme for loop quantum gravity can be carried out in principle by employing either of the two operators. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:225 / 231
页数:7
相关论文
共 22 条
[1]   Semiclassical states for constrained systems [J].
Ashtekar, A ;
Bombelli, L ;
Corichi, A .
PHYSICAL REVIEW D, 2005, 72 (02) :1-16
[2]   QUANTIZATION OF DIFFEOMORPHISM INVARIANT THEORIES OF CONNECTIONS WITH LOCAL DEGREES OF FREEDOM [J].
ASHTEKAR, A ;
LEWANDOWSKI, J ;
MAROLF, D ;
MOURAO, J ;
THIEMANN, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6456-6493
[3]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[4]   Testing the master constraint programme for loop quantum gravity:: III.: SL(2, R) models [J].
Dittrich, B ;
Thiemann, T .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (04) :1089-1120
[5]   Testing the master constraint programme for loop quantum gravity: V. Interacting field theories [J].
Dittrich, B ;
Thiemann, T .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (04) :1143-1162
[6]   Testing the master constraint programme for loop quantum gravity: IV. Free field theories [J].
Dittrich, B ;
Thiemann, T .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (04) :1121-1142
[7]   Testing the master constraint programme for loop quantum gravity: I. General framework [J].
Dittrich, B ;
Thiemann, T .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (04) :1025-1065
[8]   Testing the master constraint programme for loop quantum gravity: II. Finite-dimensional systems [J].
Dittrich, B ;
Thiemann, T .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (04) :1067-1088
[9]   Separable Hilbert space in loop quantum gravity [J].
Fairbairn, W ;
Rovelli, C .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (07) :2802-2814
[10]   On the consistency of the constraint algebra in spin network quantum gravity [J].
Gambini, R ;
Lewandowski, J ;
Marolf, D ;
Pullin, J .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1998, 7 (01) :97-109