Classes of general H-matrices

被引:35
作者
Bru, R. [1 ]
Corral, C. [1 ]
Gimenez, I. [1 ]
Mas, J. [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia, Spain
关键词
H-matrices; Generalized diagonally dominant matrices; Jacobi matrix;
D O I
10.1016/j.laa.2007.10.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M(A) denote the comparison matrix of a square H-matrix A, that is, M(A) is an M-matrix. H-matrices such that their comparison matrices are non-singular are well studied in the literature. In this paper, we study characterizations of H-matrices with either singular or non-singular comparison matrices. The spectral radius of the Jacobi matrix of M(A) and the generalized diagonal dominance property are used in the characterizations. Finally. a classification of the set of general H-matrices is obtained. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2358 / 2366
页数:9
相关论文
共 19 条
[1]   A new iterative criterion for H-matrices [J].
Alanelli, M. ;
Hadjidimos, A. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) :160-176
[2]  
Berman A., 1987, NONNEGATIVE MATRICES
[3]   On factor width and symmetric H-matrices [J].
Boman, EG ;
Chen, D ;
Parekh, O ;
Toledo, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 405 :239-248
[4]  
CORRAL C, 2006, P 5 INT C ENG COMP T
[5]   New criteria for identifying H-matrices [J].
Cvetkovic, L ;
Kostic, V .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 180 (02) :265-278
[6]  
Cvetkovic L, 2004, ELECTRON T NUMER ANA, V18, P73
[7]   CONVERGENCE OF BLOCK ITERATIVE METHODS FOR LINEAR-SYSTEMS ARISING IN THE NUMERICAL-SOLUTION OF EULER EQUATIONS [J].
ELSNER, L ;
MEHRMANN, V .
NUMERISCHE MATHEMATIK, 1991, 59 (06) :541-559
[8]   A CLASSIFICATION OF MATRICES OF CLASS-Z [J].
FIEDLER, M ;
MARKHAM, TL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 173 :115-124
[9]   Simple criteria for nonsingular H-matrices [J].
Gan, TB ;
Huang, TZ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 374 :317-326
[10]   CRITERIA FOR GENERALIZED DIAGONALLY DOMINANT MATRICES AND M-MATRICES [J].
GAO, YM ;
WANG, XH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 169 :257-268