PERIODIC SOLUTIONS OF SOME CLASSES OF CONTINUOUS SECOND ORDER DIFFERENTIAL EQUATIONS

被引:2
作者
Llibre, Jaume [1 ]
Makhlouf, Amar [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Annaba, Lab LMA, Dept Math, Elhadjar 23, Annaba, Algeria
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2017年 / 22卷 / 02期
关键词
Periodic solution; second order differential equations; averaging theory; SYSTEMS;
D O I
10.3934/dcdsb.2017022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the periodic solutions of the second order differential equations of the form x +/- x(n) = mu f (t), or x +/- vertical bar x vertical bar(n) = mu f (t) where n = 4, 5,..., f (t) is a continuous T periodic function such that [GRAPHICS] f(t)dt not equal 0, and mu is a positive small parameter. Note that the differential equations x +/- x(n) = mu f (t) are only continuous in t and smooth in x, and that the differential equations x +/- vertical bar x vertical bar(n) = mu f (t) are only continuous in t and locally Lipschitz in x.
引用
收藏
页码:477 / 482
页数:6
相关论文
共 10 条
[1]   On Yu.A. Mitropol'skii's theorem on periodic solutions of systems of nonlinear differential equations with nondifferentiable right-hand sides [J].
Buica, A. ;
Llibre, J. ;
Makarenkov, O. Yu. .
DOKLADY MATHEMATICS, 2008, 78 (01) :525-527
[2]   Averaging methods for finding periodic orbits via Brouwer degree [J].
Buica, A ;
Llibre, J .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01) :7-22
[3]   Persistence of equilibria as periodic solutions of forced systems [J].
Buica, Adriana ;
Ortega, Rafael .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2210-2221
[4]   CONTINUATION THEOREMS FOR PERIODIC PERTURBATIONS OF AUTONOMOUS SYSTEMS [J].
CAPIETTO, A ;
MAWHIN, J ;
ZANOLIN, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (01) :41-72
[5]   DETECTING PERIODIC ORBITS IN SOME 3D CHAOTIC QUADRATIC POLYNOMIAL DIFFERENTIAL SYSTEMS [J].
de Carvalho, Tiago ;
Euzebio, Rodrigo Donizete ;
Llibre, Jaume ;
Tonon, Durval Jose .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (01) :1-11
[6]   PERIODIC-SOLUTIONS OF DUFFINGS EQUATIONS WITH SUPERQUADRATIC POTENTIAL [J].
DING, T ;
ZANOLIN, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 97 (02) :328-378
[7]  
Kuznetzov Y. A., 2004, APPL MATH SCI, V112
[8]  
Lloyd N. G., 1978, Degree Theory
[9]  
MORRIS GR, 1965, PROC CAMB PHILOS S-M, V61, P157
[10]   The number of stable periodic solutions of time-dependent Hamiltonian systems with one degree of freedom [J].
Ortega, R .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 :1007-1018