Geometry of Arnold Diffusion

被引:24
作者
Kaloshin, Vadim [1 ]
Levi, Mark [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
Hamiltonian systems; instability; integrability; resonances;
D O I
10.1137/070703235
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to present to nonspecialists what is perhaps the simplest possible geometrical picture explaining the mechanism of Arnold diffusion. We choose to speak of a specific model-that of geometric rays in a periodic optical medium. This model is equivalent to that of a particle in a periodic potential in R-n with energy prescribed and to the geodesic flow in a Riemannian metric on R-n.
引用
收藏
页码:702 / 720
页数:19
相关论文
共 40 条
[1]  
[Anonymous], 2001, P S PURE MATH
[2]  
[Anonymous], 2005, COURANT LECT NOTES M
[3]  
[Anonymous], 1989, GRAD TEXTS MATH
[4]  
Arnol'd V.I., 1997, MATH ASPECTS CLASSIC
[5]  
Arnold VI, 1964, SOV MATH DOKL, V5, P581
[6]   A generic property of families of Lagrangian systems [J].
Bernard, Patrick ;
Contreras, Gonzalo .
ANNALS OF MATHEMATICS, 2008, 167 (03) :1099-1108
[7]   The dynamics of pseudographs in convex Hamiltonian systems [J].
Bernard, Patrick .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (03) :615-669
[8]   A functional analysis approach to Arnold diffusion [J].
Berti, M ;
Bolle, P .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (04) :395-450
[9]   An approach to Arnold's diffusion through the calculus of variations [J].
Bessi, U .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (06) :1115-1135
[10]   Upper bounds on Arnold diffusion times via Mather theory [J].
Bessi, U ;
Chierchia, L ;
Valdinoci, E .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (01) :105-129