DIRECT APPROACH TO DETECT THE HETEROCLINIC BIFURCATION OF THE PLANAR NONLINEAR SYSTEM

被引:1
作者
Zhang, Ling-Hao [1 ]
Wang, Wei [1 ,2 ]
机构
[1] Tianjin Univ, Sch Mech Engn, Tianjin Key Lab Nonlinear Dynam & Chaos Control, Tianjin 300072, Peoples R China
[2] Univ Huddersfield, Sch Comp & Engn, Huddersfield HD4, W Yorkshire, England
基金
中国国家自然科学基金;
关键词
Bifurcation; hyperbolic function; energy balance method; strongly nonlinear; PREDICTING HOMOCLINIC BIFURCATIONS; DYNAMICAL-SYSTEMS; ENERGY-BALANCE; OSCILLATORS; FORMULATION; ORBITS;
D O I
10.3934/dcds.2017024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a novel way of directly detecting the heteroclinic bifurcation of nonlinear systems without iteration or Melnikov type integration. The method regards the phase and fundamental frequency in a hyperbolic function solution and bifurcation parameter as the unknown components. A global collocation point, obtained from the energy balance method, together with two special points on the orbit are used to determine these unknown components. The feasibility analysis is presented to have a clear insight into the method. As an example, in a third-order nonlinear system, an expression for the orbit and the critical value of bifurcation are directly obtained, maintaining the precision but reducing the complication of bifurcation analysis. A second-order collocation point improves the accuracy of computation. For a broader application, the effectiveness of this new approach is verified for systems with a large perturbation parameter and the homoclinic bifurcation problem evolving from the even order nonlinearity.
引用
收藏
页码:591 / 604
页数:14
相关论文
共 24 条
[1]   Nonlinear dynamics of tapping mode atomic force microscopy in the bistable phase [J].
Bahrami, Arash ;
Nayfeh, Ali H. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (03) :799-810
[2]   Predicting homoclinic bifurcations in planar autonomous systems [J].
Belhaq, M ;
Lakrad, F ;
Fahsi, A .
NONLINEAR DYNAMICS, 1999, 18 (04) :303-310
[3]   New analytical technique for predicting homoclinic bifurcations autonomous dynamical systems [J].
Belhaq, M .
MECHANICS RESEARCH COMMUNICATIONS, 1998, 25 (01) :49-58
[4]   Homoclinic bifurcations in self-excited oscillators [J].
Belhaq, M ;
Fahsi, A .
MECHANICS RESEARCH COMMUNICATIONS, 1996, 23 (04) :381-386
[5]   Homoclinic connections in strongly self-excited nonlinear oscillators: The Melnikov function and the elliptic Lindstedt-Poincare method [J].
Belhaq, M ;
Fiedler, B ;
Lakrad, F .
NONLINEAR DYNAMICS, 2000, 23 (01) :67-86
[6]   A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method [J].
Cao, Y. Y. ;
Chung, K. W. ;
Xu, J. .
NONLINEAR DYNAMICS, 2011, 64 (03) :221-236
[7]   A hyperbolic Lindstedt-Poincar, method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators [J].
Chen, Y. Y. ;
Chen, S. H. ;
Sze, K. Y. .
ACTA MECHANICA SINICA, 2009, 25 (05) :721-729
[8]   Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method [J].
Chen, Y. Y. ;
Chen, S. H. .
NONLINEAR DYNAMICS, 2009, 58 (1-2) :417-429
[9]   Generalized hyperbolic perturbation method for homoclinic solutions of strongly nonlinear autonomous systems [J].
Chen, Yang-yang ;
Yan, Le-wei ;
Sze, Kam-yim ;
Chen, Shu-hui .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2012, 33 (09) :1137-1152
[10]   APPLICATION OF IMPROVED AMPLITUDE-FREQUENCY FORMULATION TO NONLINEAR DIFFERENTIAL EQUATION OF MOTION EQUATIONS [J].
Davodi, A. G. ;
Ganji, D. D. ;
Azami, R. ;
Babazadeh, H. .
MODERN PHYSICS LETTERS B, 2009, 23 (28) :3427-3436