Rotation and scaling invariant texture classification based on Radon transform and multiscale analysis

被引:23
|
作者
Cui, PL
Li, JH [1 ]
Pan, Q
Zhang, HC
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Haidian Dist, Peoples R China
基金
中国国家自然科学基金;
关键词
texture classification; radon transform; invariant; wavelet transform;
D O I
10.1016/j.patrec.2005.09.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a rotation and scaling invariant feature set based on Radon transform and multiscale analysis. Radon transform is used to project the image to 1-D space, and then the rows of the projection matrix are transformed by an adaptive 1-D wavelet transform, thus the feature matrix with scaling invariance is derived in the Radon-wavelet domain. Multiscale analysis is employed for the feature matrix, and the energy values at different scales are proven not only to be invariant under image scaling and rotation, but also to reflect the different energy distributions of the texture image at different scales. In the classification stage, Mahalanobis classifier is used to classify 25 classes of distinct natural textures. Using the testing image sets with different orientations and scaling, experimental results show that the average recognition rate for joint rotation and scaling invariance of our proposed classification method can be 92.2%. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:408 / 413
页数:6
相关论文
共 50 条
  • [21] Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification
    Wang, Qiangchang
    Zheng, Yuanjie
    Yang, Gongping
    Jin, Weidong
    Chen, Xinjian
    Yin, Yilong
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (01) : 184 - 195
  • [22] Rotation-invariant texture analysis using Radon and Fourier transforms
    Xiao, Songshan
    Wu, Yongxing
    CHINESE OPTICS LETTERS, 2007, 5 (09) : 513 - 515
  • [23] Rotation-invariant texture analysis using radon and Fourier transforms
    Xiao, Song-Shan
    Wu, Yong-Xing
    4th International Symposium on Instrumentation Science and Technology (ISIST' 2006), 2006, 48 : 1459 - 1464
  • [24] Model based rotation-invariant texture classification
    Campisi, P
    Neri, A
    Scarano, G
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 117 - 120
  • [25] Rotation-invariant texture analysis using Radon and Fourier transforms
    肖松山
    吴永兴
    Chinese Optics Letters, 2007, (09) : 513 - 515
  • [26] Rotation invariant texture classification based on Gabor wavelets
    Xie, Xudong
    Lu, Jianhua
    Gong, Jie
    Zhang, Ning
    MIPPR 2007: PATTERN RECOGNITION AND COMPUTER VISION, 2007, 6788
  • [27] Histogram of Radon transform and texton matrix for texture analysis and classification
    Di Ruberto, Cecilia
    IET IMAGE PROCESSING, 2017, 11 (09) : 760 - 766
  • [28] Rotation-invariant Texture Image Classification Using R-transform
    Li, Chao-Rong
    Deng, Yong-Hai
    2012 2ND INTERNATIONAL CONFERENCE ON UNCERTAINTY REASONING AND KNOWLEDGE ENGINEERING (URKE), 2012, : 271 - 274
  • [29] Robust rotation invariant texture classification
    Porter, R
    Canagarajah, N
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3157 - 3160
  • [30] Rotation-invariant texture classification
    Lahajnar, F
    Kovacic, S
    PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1151 - 1161