Negativity and strong monogamy of multiparty quantum entanglement beyond qubits

被引:56
作者
Choi, Jin Hyuk [1 ]
Kim, Jeong San [2 ,3 ]
机构
[1] Kyung Hee Univ, Humanitas Coll, Yongin 446701, Gyeonggi Do, South Korea
[2] Kyung Hee Univ, Dept Appl Math, Yongin 446701, Gyeonggi Do, South Korea
[3] Kyung Hee Univ, Inst Nat Sci, Yongin 446701, Gyeonggi Do, South Korea
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 04期
基金
新加坡国家研究基金会;
关键词
SEPARABILITY CRITERION; SQUASHED ENTANGLEMENT; MIXED STATES;
D O I
10.1103/PhysRevA.92.042307
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose the square of convex-roof extended negativity (SCREN) as a powerful candidate to characterize strong monogamy of multiparty quantum entanglement. We first provide a strong monogamy inequality of multiparty entanglement using SCREN and show that the tangle-based multiqubit strong-monogamy inequality can be rephrased by SCREN. We further show that the SCREN strong-monogamy inequality is still true for the counterexamples that violate tangle-based the strong-monogamy inequality in higher-dimensional quantum systems other than qubits. We also analytically show that SCREN strong-monogamy inequality is true for a large class of multiqudit states, a superposition of multiqudit generalized W-class states and vacuums. Thus SCREN is a good alternative to characterize the strong monogamy of entanglement even in multiqudit systems.
引用
收藏
页数:8
相关论文
共 27 条
[1]  
Bennett C H, 1984, P IEEE INT C COMP SY, V175, P175
[2]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[3]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[4]   Faithful Squashed Entanglement [J].
Brandao, Fernando G. S. L. ;
Christandl, Matthias ;
Yard, Jon .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 306 (03) :805-830
[5]   Squashed entanglement: An additive entanglement measure [J].
Christandl, M ;
Winter, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (03) :829-840
[6]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[7]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[8]   Distillability and partial transposition in bipartite systems -: art. no. 062313 [J].
Dür, W ;
Cirac, JI ;
Lewenstein, M ;
Bruss, D .
PHYSICAL REVIEW A, 2000, 61 (06) :8
[9]   Mixed-state entanglement and distillation: Is there a "bound" entanglement in nature? [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5239-5242
[10]   Separability of mixed states: Necessary and sufficient conditions [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICS LETTERS A, 1996, 223 (1-2) :1-8